• Title/Summary/Keyword: Cu alloys

Search Result 670, Processing Time 0.021 seconds

Magenetic Properties of Nd-Fe-B-Co-based Melt-spun Ribbons an dTheir Bonded Magents (Nd-Fe-B-Co계 급냉리본과 Bond 자석의 자기적 성질)

  • Gang, Gye-Myeong;Gang, Gi-Won;O, Yeong-Min;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.175-184
    • /
    • 1993
  • Abstract Co-and/or AI-added Nd-Fe-B-based magnetic alloys were fabricated by using vacuum induction melting frunace, and melt-spun ribbons were made of the magnetic alloys with single roll rapid quenching method. The variation of magnetic properties of the melt-spun ribbons as a function of Cuwheel velocity (Vs) were investigated. Bonded magnets were made of the optimally quenched ribbon fragments, and the magnetic properties of the melt-spun ribbons and the bonded magnets were studied, relating to the microstructure and crystalline structure. Cu-wheel surface velocity had a strong effect on the magnetic properties of the melt-spun ribbons, and the maximum properties were obtained around Vs =20m/sec. The optimally quenched ribbon had a cellura-type microstructure, in which fine N$d_2$F$e_14$B grains were surrounded by thin Nd-rich phase. In case of a 2.1at% AI-added melt-spun ribbon, the magnetic properties were as follows: iHc, Br, and (BH)max were 15.5KOe, 7.8KG and 8.5MGOe respectively. And resin bonded magnets were fabricated by mixing optimally quenched ribbon fragments with 2.5wt % polyamide resin, compacting and binding at room temperature. The iHc, Br and (BH)max of bonded magnet were lO.2KOe, 4.4KG and 3.3MGOe respectively. And hot-pressed magnets were made by pressing the overquenched ribbons at high temperature. The magnetic properties of hot-pressed magnets were better than those of bonded magnets, and when the holding time was 8 minutes, the iHc, Br, and (BH)max of the hot-pressed magnet were 1O.8KOe, 7.3KG and 8.0MGOe respectively. Domain structure was mainly maze pattern, which means that the easy magnetization axis could be aligned, and the domain width of the hot-pressed magnets was smaller than that of bonded magnets.

  • PDF

Thermal Stability of $\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) Amorphous Alloys ($\textrm{Fe}_{80-x}\textrm{P}_{10}\textrm{C}_{6}\textrm{B}_{4}\textrm{M}_{x}$(M=Transition Metal) 비정질합금의 열적안정성)

  • Guk, Jin-Seon;Jeon, U-Yong;Jin, Yeong-Cheol;Kim, Sang-Hyeop
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.218-223
    • /
    • 1997
  • At the aim of finding a Fehased amorphous alloy with a wide supercooled liquid region (${\Delta}T_{x}=T_{x}-T_{g}$) before crystallization, the changes in glass transition temperatudfI$T_{g}$ and crystallization temperature ($T_{x}$) by the dissolution of additional M elements were examined for the $Fe_{80}P_{10}C_{6}B_{4}$(x~6at%. M= transition metals) amorphous alloys. The ${\Delta}T_{x}$ value is 27K for the Fe,,,P,,,C,,R, alloy and increases to 40K for the addition of M=4at%Hf, 4at%Ta or 4at%Mo. The increase in ${\Delta}T_{x}$ is due to the increase of $T_{x}$ exceeding the degree in the increase in $T_{g}$. The $T_{g}$ and $T_{x}$ increase with decreasing electron concentration (e/a) from about 7 38 to 7.05. The decrease of e/a also implies the increase in the attractive bonding state between the M elements and other constitutent elements. It is therefore said that $T_{g}$ and $T_{x}$ increase kith increasing attractive bonding force.

  • PDF

Mechanical Properties and Microstructural Analysis of Sn-40Bi-X Alloys (Sn-40Bi-X 합금의 기계적 물성과 미세조직 분석)

  • Lee, Jong-Hyun;Kim, Ju-Hyung;Hyun, Chang-Yong
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.79-79
    • /
    • 2010
  • 저온용 무연 솔더의 대표 조성으로 고려되고 있는 Sn-58Bi(융점: $138^{\circ}C$) 공정(eutectic) 조성은 우수한 강도에도 불구하고 연성(ductility) 측면에서의 문제점이 지속적으로 보고되고 있다. 따라서 이 합금계의 연성을 최대로 개선시킬 수 있으면서도 실제 상용화가 가능한 합금 조성의 개발 연구가 요청된다. 본 연구에서는 Sn-Bi 2원계 조성에서 최대의 연성을 나타내는 것으로 보고된 Sn-40Bi 조성에 미량의 합금원소를 첨가함으로써 최대의 연성을 확보하는 한편, 그 연성 특성이 변형속도에 어느 정도 민감한지를 인장 실험을 통해 결정하고자 하였다. 합금원소로는 0.1~0.5 wt%의 Ag, Mn, In, Cu를 선택하였으며, 인장 시편을 제조하여 $10^{-2}$, $10^{-3}$, $10^{-4}\;s^{-1}$의 3종류로 변형속도를 변형시켜가며 응력-변형 곡선(stress-strain curve)을 측정하였고, 조성별, 변형속도별로 최대인장강도(ultimate tensile stress, UTS) 및 연신율 결과들을 정리하였다. 합금원소를 첨가한 조성의 경우는 모든 시험 조건에서 Sn-40Bi보다 우수한 연신률을 나타내는 것으로 측정되었으나, $10^{-2}\;s^{-1}$의 빠른 변형속도에서는 그 향상 정도가 상대적으로 감소하는 경향이 관찰되었다. 특히 Sn-40Bi-0.5Ag 조성의 경우 느린 변형속도에서 특히 눈에 띄는 연신률 값을 나타내며, 모든 변형속도 조건에서 가장 우수한 연성을 나타내었다. 한편 Sn-40Bi-0.1Cu 조성의 경우 변형속도에 따른 연신률의 변화 정도, 즉, 변형속도에 따른 연신률의 민감도가 매우 커 $10^{-4}\;s^{-1}$ 속도에서는 Sn-40Bi-0.5Ag에 버금가는 연신률 값이 측정되었으나, $10^{-2}\;s^{-1}$ 속도에서는 가장 나쁜 연신률 특성을 보여주었다. Sn-40Bi-0.2Mn 조성은 최고의 연신률 향상 특성을 나타내지는 않았으나, In을 첨가한 경우보다는 대체적으로 우수한 연성을 나타내었다. 이상의 각 합금별 연성 특성은 인장시험 전의 미세조직 관찰 결과와 인장시험 후 파면부의 조직변화 관찰 결과로부터 해석되었다. 그 결과 석출상의 형성 여부, 인장 시험 중 재결정 조직의 형성 여부, 라멜라(lamellar) 조직의 분율과 라멜라 간격(lamellar spacing)의 정도 또는 $\beta$-Sn과 라멜라 조직 사이의 결정립계와 라멜라 조직 내 결정립계에서의 슬라이딩 모드(sliding mode) 변형 정도, 석출상의 크기와 분포 정도 등이 연신률 및 변형속도 민감도와 같은 연성 특성에 가장 큰 영향을 미치는 인자인 것으로 분석되었다.

  • PDF

Ornamented Dagger Sheath from Gyerim-ro Tomb No.14, Gyeongju: On the Joining Process of Gold Granules (경주 계림로 14호분 장식보검 금립의 접합방법에 관한 고찰)

  • Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.16
    • /
    • pp.4-13
    • /
    • 2015
  • In most gold objects crafted using the granulation technique that have been thus far discovered in the Korean Peninsula, granules were joined using a soldering alloy of gold and silver. However, it was recently revealed through SEM-EDS analysis performed on the ornamented dagger sheath from Gyerim-ro Tomb No.14 in Gyeongju that the gold granules were joined to the surface of this sheath using an entirely different technique. The gold granules on the Gyerim-ro dagger sheath are evenly sized and shaped, the surface has a dendritic texture. Dendritic textures are a characteristic feature of metal alloys, not observed in pure metals. As a matter of fact, the gold granules were made of a ternary alloy of 77wt% Au, 18wt% Ag and 4wt% Cu. Due to this component, the alloy has a melting point below 1000℃ (approximately 980℃), which is significantly lower than 1064℃, the melting temperature of pure gold. This makes it possible to join the gold granules directly to the surface of the sheath by briefly heating them to high temperature, without the use of soldering or any other media. When examined through SEM image, the surface of the sheath showed no traces of soldering, it suggests that the granules were joined through unaided fusion.

Effects of Alloying Elements and Binding Materials on the Corrosion Behavior of Metal Hydride Electrodes (금속수소화물전극의 부식특성에 미치는 합금원소와 결합제의 영향)

  • Lee, Yang-Boum;Choe, Han-Cheol;Park, Ji-Yoon;Kim, Kwan-Hyu
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 1998
  • It has been investigated the effects of alloying elements and binders on the corrosion behavior of metal hydride electrodes for anode of Ni/MH secondary battery. The $AB_5$-type alloys, $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ and $(LM)Ni_{3.6}Co_{0.7}Mn_{0.3}Al_{0.4}$, were used for the experiments. The electrodes were prepared by mixing and cold-pressing of alloy powders with Si sealent or PTFE powders, or cold-pressing the electroless copper coated alloy powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

A Study on the Solderability of In and Bi Contained Sn-Ag Alloy (In, Bi를 함유한 Sn-Ag계 무연솔더의 솔더링성 연구)

  • 김문일;문준권;정재필
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.43-47
    • /
    • 2001
  • Sn-3Ag-8Bi-5In was developed for the intermediate melting point solder. Although In-contained solder is expensive, its melting point is lower than these of Sn-Ag-Cu alloys. Sn-3Ag-8Bi-5In solder used for this research has a melting range of 188~$204^{\circ}C$. On this study wetting characteristics of Sn-3Ag-8Bi-5In were evaluated in order to investigate its availability as a Pb-free solder. Wettabilities of Sn-37Pb and Sn-3.5Ag solders were also studied to compare these of the Sn-3Ag-8Bi-5In. Experimental results showed that the zero-cross-time and wetting time at $240^{\circ}C$ for the Sn-3Ag-8Bi-5In were 1.1 and 2.2 second respectively. These values are a little better than these of Sn-37Pb and Sn-3.5Ag solders. The equilibrium wetting farce of the Sn-3Ag-8Bi-5In was 5.8 mN at $240^{\circ}C$, and it was tuned out to be a little higher than that of Sn-3.5Ag and lower than that of Sn-37Pb.

  • PDF

Microstructural Change by Hot Forging Process of Korean Traditional Forged High Tin Bronze (전통기술로 제작된 방짜유기의 열간 단조 과정별 미세조직 변화)

  • Lee, Jae-sung;Jeon, Ik-hwan;Park, Jang-sik
    • Journal of Conservation Science
    • /
    • v.34 no.6
    • /
    • pp.493-502
    • /
    • 2018
  • Currently, the fabrication of a high-tin bronze spoon by traditional manufacturing techniques involves 10 steps in the bronze ware workshop. Hot forging has a major influence on manufacturing and involves two to three steps. The dendritic ${\alpha}$-phase in the microstructure of the high-tin bronze spoon is refined and finely dispersed through hot forging. In addition, twinning is observed in the ${\alpha}$-phase of the hammered part, and the ${\alpha}$-phase microstructure gradually transform from a polygon to a circular shape due to hammering. In this process, the adjacent ${\alpha}$-phases overlap with each other and remain combined after quenching. The microstructure with the overlapping is also observed in bronze artifacts, and this shows the correlation with technical system. The results of the experimental hot forging of Cu-22%Sn alloys show that the decrease in in the amount of the dendritic microstructure, which forms during casting, is in proportion to the number of processing steps and that the refined grain obtained by hammering contributes to the improvement in the strength of the material. From the hammering marks, which are observed on both the bronze artifact excavated from archaeological sites and on the high-tin bronze spoon produced in the traditional workshop, it is presumed that the knowledge regarding the unrecorded manufacturing system of bronze ware in ancient times has been passed down in a traditional way up to the system used currently.

Change of crystallization and properties of YBCO thin film by phase transition of $CeO_2$ ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1590-1592
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_2Cu_3O_{7-{\delta}}$ thin films on Hastelloy(Ni-Cr-Mo alloys) with $CeO_2$ buffer layers by in-situ pulsed laser deposition in a multi-target processing chamber. Using one of electrical properties of YBCO superconducting which the resistance approaches to zero dramatically on transition temperature, we have researched to make power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to make films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting layer and non-crystallization of YBCO on amorphous substrate. From early research, two ways-using textured metallic substrate and buffer layer-were proposed to overcome theses difficulties. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with $3.82{\AA}$ of a-axis lattice parameter of YBCO on (110) direction of $CeO_2$. In order to enhance the crystallization of YBCO films on metallic substrates we deposited $CeO_2$ buffer layers at varying temperature $700^{\circ}C$ to $800^{\circ}C$ and $O_2$ pressure. By X-ray diffraction, we found that each domination of (200) and (111) orientations were strongly relied upon the deposition temperature in $CeO_2$ layer and the change of the domination of orientation affects the crystallization of YBCO upper layer.

  • PDF

Degradation Behavior of Eutectic and Pb-free Solder Plated Ribbon in Crystalline Silicon Photovoltaic Module (유무연 용융도금 리본에 따른 결정질 실리콘 태양전지 모듈 열화거동)

  • Kim, Ju-Hee;Kim, A Yong;Park, Nochang;Ha, Jeong Won;Lee, Sang Guon;Hong, Won Sik
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.75-81
    • /
    • 2014
  • Usage of heavy metal element (Pb, Hg and Cd etc.) in electronic devices have been restricted due to the environmental banning of the European Union, such as WEEE and RoHS. Therefore, it is needed to develop the Pb-free solder plated ribbon in photovoltaic (PV) module. This study described that degradation characteristics of PV module under damp heat (DH, $85^{\circ}C$ and 85% R.H.) condition test for 1,000 h. Solar cell ribbons were utilized to hot dipping plate with Pb-free solder alloys. Two types of Pb-free solder plated ribbons, Sn-3.0Ag-0.5Cu (SAC305) and Sn-48Bi-2Ag, and an electroless Sn-40Pb solder hot dipping plated ribbon as a reference sample were prepared to evaluate degradation characteristics. To detect the degradation of PV module with the eutectic and Pb-free solder plated ribbons, I-V curve, electro-luminescence (EL) and cross-sectional SEM analysis were carried out. DH test results show that the reason of maximum power (Pm) drop was mainly due to the decrease fill factor (FF). It was attributed to the crack or oxidation of interface between the cell and the ribbon. Among PV modules with the eutectic and Pb-free solder plated ribbon, the PV module with SAC305 ribbon relatively showed higher stability after DH test than the case of PV module with Sn-40Pb and Sn-48Bi-2Ag solder plated ribbons.

High reliability nano-reinforced solder for electronic packaging (전자 패키징용 고신뢰성 나노입자 강화솔더)

  • Jung, Do-hyun;Baek, Bum-gyu;Yim, Song-hee;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • In the soldering industry, a variety of lead-free solders have been developed as a part of restricting lead in electronic packaging. Sn-Ag-Cu (SAC) lead-free solder is regarded as one of the most superior candidates, owing to its low melting point and high solderability as well as the mechanical property. On the other hand, the mechanical property of SAC solder is directly influenced by intermetallic compounds (IMCs) in the solder joint. Although IMCs in SAC solder play an important role in bonding solder joints and impart strength to the surrounding solder matrix, a large amount of IMCs may cause poor strength, due to their brittle nature. In other words, the mechanical properties of SAC solder are of some concern because of the formation of large and brittle IMCs. As the IMCs grow, they may cause poor device performance, resulting in the failure of the electronic device. Therefore, new solder technologies which can control the IMC growth are necessary to address these issues satisfactorily. There are an advanced nanotechnology for microstructural refinement that lead to improve mechanical properties of solder alloys with nanoparticle additions, which are defined as nano-reinforced solders. These nano-reinforced solders increase the mechanical strength of the solder due to the dispersion hardening as well as solderability of the solder. This paper introduces the nano-reinforced solders, including its principles, types, and various properties.