• Title/Summary/Keyword: Cu Powder

Search Result 1,114, Processing Time 0.032 seconds

A Study on the Electromagnetic Shielding of Conductive Powder (도전성(導電性) 분체(粉體)의 전자차폐(電磁遮蔽)에 관한 연구(硏究))

  • Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.244-249
    • /
    • 2004
  • In this paper, shielding effectiveness(SE) of the shielding paint of electromagnetic(EM) waves was investigated with actual experiments. The shielding paint used in this study were made of powder of conductive materials - Ag, Cu, Al, Sn, Ni. Cr, Graphite and Charcoal etc. with a solubility in oil and water. Also, the paper was used as a base sheet. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that silver, copper, nickel were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of density of particles on the SE were studied about the EM shielding paint. The SE strongly depended on the electric resistance by density of painting particles. SE increased as the density of particles was increasing.

  • PDF

Fabrication and Microstructure/Properties of Bulk-type Tantalum Material by a Kinetic Spray Process (Kinetic Spray 공정을 이용한 벌크형 탄탈륨 소재의 제조 및 미세조직/물성)

  • Lee, Ji-Hye;Kim, Ji-Won;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • A bulk-type Ta material is fabricated using the kinetic spray process and its microstructure and physical properties are investigated. Ta powder with an angular size in the range $9-37{\mu}m$ (purity 99.95%) is sprayed on a Cu plate to form a coating layer. As a result, ~7 mm-sized bulk-type high-density material capable of being used as a sputter material is fabricated. In order to assess the physical properties of the thick coating layer at different locations, the coating material is observed at three different locations (surface, center, and interface). Furthermore, a vacuum heat treatment is applied to the coating material to reduce the variation of physical properties at different locations of the coating material and improve the density. OM, Vickers hardness test, SEM, XRD, and EBSD are implemented for analyzing the microstructure and physical properties. The fabricated Ta coating material produces porosity of 0.11~0.12%, hardness of 311~327 Hv, and minor variations at different locations. In addition, a decrease in the porosity and hardness is observed at different locations upon heat treatment.

The Effect of Energy-absorbing layers on Micro-patterning of Magnetic Metal Films using Nd:YAG Laser (Nd:YAG Laser를 이용한 자성금속막의 패턴 식각에 있어서 에너지 흡수층이 미치는 영향)

  • 이주현;채상훈;서영준;송재성;민복기;안승준
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.538-544
    • /
    • 2000
  • The laser patterning of sputter-deposited CoNdZr/Cu/CoNbZr multi-layered films had been tried using Nd:YAG laser. However generally it is very difficult to remove metal films because of their high reflectance of the laser on the surfaces. As a counterproposal for this problem authors for the first time tried to deposit energy-absorbing layers on the metal films and then irradiated the laser on the surfaces of energy-absorbing layers. Here the energy-absorbing layers consisted of laser energy-absorbing fine powders and binding polymers. Three kinds of powders for the energy-absorbing layers had been used to see the difference in the pattern formation with the degree of laser energy absorption. They were electrically conductive silver powders insulating BaTiO$_3$powder and semiconducting carbon powder. Remarkable difference in width of the formed pattern and the roughness of pattern edge were observed with the characteristic of the powder for the energy-absorbing layer. The pattern width using carbon paste was about three times larger than that using BaTiO$_3$paste. It was observed that the energy-absorbing layer with carbon was the most effective on this micro-patterning.

  • PDF

Microencapsulation of Hydrogen Storage Alloys (수소저장합금의 마이크로캡슐화)

  • Kim, Dai Ryong;Kim, Yong Cheol;Keum, Dong Uk
    • Journal of Hydrogen and New Energy
    • /
    • v.1 no.1
    • /
    • pp.31-39
    • /
    • 1989
  • Although it has been well known that many metal hydrides are promising to use for hydrogen storage and other applications, some difficulties still remain. Metal hydrides, particularly in powder form, have very poor thermal conductivity. The hydrogen storage alloys degrade intrinsically or extrinsically during repeated hydriding and dehydriding. Elimination of these problems is very important in the practical applications. In order to prevent degradation and to improve the thermal conductivity, the hydrogen storage characteristics of rare-earth type alloy encapsulated with Cu or Ni by means of chemical plating have been investigated. No changes has occured in hydrogen absorption capacity and equilibrium pressure even though the alloy powder is microencapsulated. The first hydrogen absorption rate of the alloy encapsulated increased considerably comparing to uncapsulated sample. In the case of encapsulating the fine powder ($>10{\mu}m$) and subsequent compacting by $8ton/cm^2$, shape of compact is maintained regardless of hydriding and dehydriding. The degree of degradation of the alloy caused by impurity gas of CO or $O_2$ was decreased prominently by encapsulation.

  • PDF

Study on matching property of mixed powder electrode and dielectric for application of PDP panel (PDP 패널 적용을 위한 복합분말 전극과 유전체의 상호 매칭성 연구)

  • Park, Jung-Ho;Ji, Mi-Jung;Choi, Byung-Heon;Lee, Jung-Min;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.92-92
    • /
    • 2008
  • PDP의 저가화, 친환경화, 고화질화는 타 디스플레이와 경쟁을 위해 필수적이고 그로 인한 소재의 개발이 필요하다. 저가화는 부품, 공정에서도 가능하지만 소재에서의 원가가 상당부분을 차지하고 있기 때문에 소재 개발이 중요하며, 친환경화는 현재 유전체에서 많이 사용되고 있는 유해소재를 친환경 소재로 대체함으로써 개발이 이루어지고 있다. 그래서 우리는 현재 PDP에서 전극물질로 사용되어지는 고가의 Ag를 Gu입자에 Ag 박막으로 코팅한 Ag/Cu 전극 powder를 사용하여 저가의 전극 paste를 만들고 스크린 프린터와 노광장비를 사용하여 전극을 형성하였다. 그 후 친환경적인 Pb free 투명유전체를 입히고 전극과의 상호 매칭성을 연구 하였다. 결과적으로 기존 PDP 공정에서 볼 수 없었던 황변현상, 전극착색현상, 전극입자의 터짐성 등 많은 현상이 일어났지만, 기존 공정 온도보다 낮은 온도로 공정한 결과, 이러한 문제들이 줄어드는 것을 확인하였다. 이로써 공정단가의 저가화와 제품의 친환경을 가면서도 기존과 차이가 제품을 실현할 수 있을 것이다.

  • PDF

The Effects of the Amount of $\textrm{SiO}_2$ Dopant on the Melt Oxidation Behavior of the Al-Alloy (Al-합금의 용융산화거동에 미치는 $\textrm{SiO}_2$도판트 량의 영향)

  • Gang, Jeong-Yun;Kim, Il-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.609-614
    • /
    • 1999
  • The effect of the amount of $SiO_2$dopant on the behavior of $AlO_2$$O_3$-composite formation by melt oxdation of Al-alloy was examined in this paper. The $SiO_2$powder was spread on the top surface of the Al-1Mg-3-Si-5Zn-1Cu alloy in th alumina crucible. The selected amount of each powder was 0.03, 0.10, 0.16g/$\textrm{cm}^2$. The oxidation behavior was determined by observing the weight gain after the heat treatment for 10 hours at 1373K. The macroscopic structure of formed oxide layer was examined by an optical microscope. The top surface and the cross-section of the grown oxide layer were investigated by SEM and analysed by EDX. The $SiO_2$ powder was determined to enhance oxidation by thermit reaction with Al which reduced the growth incubation period of the oxidation layer. As the amount of the $SiO_2$dopant increased, the growth rate decreased due to the precipitated Si which blocked the Al-alloy channel in the composite materials. However, more uniform layer was obtained due to the occurrance of the enhanced oxidation reaction in the whole alloy surface compared to the case of addition of less amount of dopant.

  • PDF

Fabrication of $MgB_2$ tape with metal powder addition (금속분말이 첨가된 $MgB_2$ 선재의 제조 및 특성)

  • Ko, Jae-Woong;Yoo, Jai-Moo;Kim, Young-Kuk;Chung, Kook-Chae;Yoo, Sang-Im;Wang, Xio Lin;Dou, Shi Xue
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • The $MgB_2$ tapes with several metal powder addition were fabricated by PIT method with or without heat treatment. The $J_c$ value of $5.600A/cm^2$ and $16.000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol % of Cu added $MgB_2$ tape without heat treatment respectively. The $J_c$ value of $8.000A/cm^2$ and $35,000A/cm^2$ at 4.2 K and 5 T were obtained for the $MgB_2$ tape and 10 vol. % of Al added $MgB_2$ tape with heat treatment, respectively. The $J_c-B$ curve shows enhancement in $J_c$ under magnetic field. which suggests enhancement in workability and grain connectivity with several metal powder addition.

TPS Analysis of Various Metal Plates for Belt Source Evaporation in AMOLED Manufacturing

  • Hwang, Chang-Hun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1603-1606
    • /
    • 2007
  • The TPS (Temperature Programmed Sublimation) technology has been developed to monitor the plane evaporation of the organic films and introduced in SID2007, P53.[4] The Alq3 organic film is deposited on various metal surface such as Cu, Ti, Invar, STS to sublimate. The TPS signal confirms that the Alq3 film consists of nano scale film phase and bulk phase on all the metal plates. The sublimation temperature of the Alq3 film was much lower ($130^{\circ}C$) than the vapor temperature ($265^{\circ}$) of the Alq3 powder.

  • PDF

Preparation and Characteristics of CIGS nanopowder (CIGS nanopowder 제조 및 특성분석)

  • Ham, Chang-Woo;Suh, Jeong-Dae;Cho, Jung-Min;Song, Ki-Bong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.371-372
    • /
    • 2009
  • We have prepared and characterized CIGS nanopowder for absorber layer of photovoltaic. CIGS nanopowder were obtained at $260^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$ and Se powder in solvent. The CIGS nanopowder were identified to have a typical chalcopyrite tetragonal structure by using X-ray diffraction(XRD), Inductively Coupled Plasma Auger Electron Spectroscopy (AES), Scanning Electron Microscopy(SEM).

  • PDF