• Title/Summary/Keyword: Cu Powder

Search Result 1,114, Processing Time 0.025 seconds

A Study of the Microstructure and Impurity Characteristics of Cast Bronze in Koryo Period (고려시대의 청동 주물에서 관찰되는 불순물(Cu2S) 특성 연구)

  • Choi, Jung Eun
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.313-320
    • /
    • 2016
  • The aim of this study was to obtain information on the ancient material of cast bronze through an investigation of the microstructure and impurity characteristics of the casting. Three Koryo bronze coins were analyzed using an optical microscope, scanning electron microscope, and electron dispersive X-ray analyses were used to determine the composition of the specimens. The three coins had 4 phases: ${\alpha}phase$, ${\delta}phase$, Pb, and impurities ($Cu_2S$). $Cu_2S$ was found to exist near Pb or in ${\delta}phase$. $Cu_2S$ is the inter mediate product of copper ore refining. Therefore, the copper ore was not completely refined. To find out the characteristic of $Cu_2S$, we melt 1)Koryo bronze coin and 2)$Cu_2S$ and Pb powder at 1273 K. The reaction between $Cu_2S$ and Pb at 1273 K yielded fine Cu and black gas, which was identified to be PbS and is presented below: $Cu_2S+Pb{\rightarrow}PbS{\uparrow}+2Cu$.

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF

Characteristic Evaluation of Iron Aluminide-Cu and Ni-P Coated $SiC_p$ Preform Fabricated by Reactive Sintering Process (반응소결법으로 제조한 Iron Aluminide-Cu 및 Ni-P 피복 $SiC_p$ 예비성형체의 특성평가)

  • Cha, Jae-Sang;Kim, Sung-Joon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.22 no.1
    • /
    • pp.42-48
    • /
    • 2002
  • Effects of coating treatment of metallic Cu, Ni-P film on $SiC_p$, for $SiC_p$/iron aluminide composites were studied. Porous hybrid preforms were fabricated by reactive sintering after mixing the coated $SiC_p$, Fe and Al powders. Then the final composites were manufactured by squeeze casting after pouring AC4C Al alloy melts in preforms. The change of reactive temperature, density, microstructure of the preforms and microstructure of the composites were investigated. The exprimental results were summarized as follows. The thickness of Cu and Ni-P metallic layer formed on $SiC_p$ by electroless plating method were about $0.5{\mu}m$ and coated uniformly. There was no remakable change in the ignition temperature with variation of the mixing ratio of Fe and Al powder while in the case of coated $SiC_p$ it was lower about $20^{\circ}C$ than in the non-coated $SiC_p$. The maximum reaction temperature increased with increasing Al contents, but decreased with increasing $SiC_p$ contents. Expansion ratio of preform after reactive sintering increased with amount of Cu coated $SiC_p$. In the case of Fe-70at.%Al, the expansion ratio was about 7% up to 8wt.% of $SiC_p$, addition but further addition of $SiC_p$, increased the ratio significantly. And in the case of Fe-50 and 60at.%Al, it was about 20% up to 16wt.% of $SiC_p$ addition and about 28% in 24wt.% of $SiC_p$, addition. The microstructures of compounds showed that the grains became finer as amount of $SiC_p$, and mixing ratio of iron powder increased and the shape of compounds was changed gradually from irregular to spheroidal.

Analysis of Photon Spectrum for the use of Added Filters using 3D Printing Materials (3D 프린팅 재료를 이용한 X-선 부가 여과 시 광자 스펙트럼에 대한 분석)

  • Cho, Yong-In;Lee, Sang-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2022
  • 3D printing technology is being used in various fields such as medicine and biotechnology, and materials containing metal powder are being commercialized through recent material development. Therefore, this study intends to analyze the photon spectrum during added filtration using 3D printing material during diagnostic X-ray examination through simulation. Among the Monte Carlo techniques, MCNPX (ver. 2.5.0) was used. First, the appropriateness of the photon spectrum generated in the simulation was evaluated through SRS-78 and SpekCalc, which are X-ray spectrum generation programs in the diagnostic field. Second, photon spectrum the same thickness of Al and Cu filters were obtained for characterization of 3D printing materials containing metal powder. In addition, the total photon fluence and average energy according to changes in tube voltage were compared and analyzed. As a result, it was analyzed that PLA-Al required about 1.2 ~ 1.4 times the thickness of the existing Al filter, and PLA-Cu required about 1.4 ~ 1.7 times the thickness of the Cu filter to show the same degree of filtration. Based on this study in the future, it is judged that it can be utilized as basic data for manufacturing 3D printing additional filters in medical fields.

Effect of Pb dopped on BiSrCaCuO system (BiSrCaCuO계의 Pb첨가 효과)

  • Han, Tae-Heui;Park, Sung-Jin;Hwang, Jong-Sun;Kim, Dong-Pil;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.269-273
    • /
    • 1991
  • High Tc oxide superconductor with a Tc above 100 K has been successfully prepared by solid state reaction method in added-Pb BiSrCaCuO system. As compared with 123 compound, the formation reaction of the high Tc requires long time heat treatment. It is due to the transformation from the low Tc phase to high Tc phase. The sintering just below the melting point of the calcined powder mixture is effective on the formation of the high Tc phase in BiSrCaCuO system to be added with Pb. The growth of the high Tc superconducting phase has a thin plate shape, which is characterized by the c parameter of 37${\AA}$. The formation kinetics is also investigated in the samples with different Bi/Pb ratio and the 30% Pb addition is most preferable for the formation of the high Tc phase. The formation of the high Tc phases is delayed by the excessive addition of Pb. The lattice parameter(c) of the unit cell(both the low and high Tc phases) is increased with increase of Pb.

  • PDF

Performance Evaluation on the Reinforcing Material of Plastic Composites for the Electromagnetic Shielding (전자차폐(電磁遮蔽)를 위한 플라스틱 복합재료용(複合材料用) 강화재(强化材)의 성능평가(性能評價))

  • Kim, Dong-Jin;Murakami, Ri-ichi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.1048-1054
    • /
    • 1999
  • It is important to study the shielding effectiveness(SE) of reinforcing material of plastic composite materials against the electromagnetic(EM) waves. In this paper, SE of the shielding material of EM waves was investigated with actual experiments. The materials used in this study were made up of film, fiber and powder of conductive materials - Cu, Al, CF etc. Also, The resin film was used as matrix. The experiment was carried out by using a shielding evaluator(Shielding box) TR17302 with an ADVANTEST spectrum analyzer, model R3361C. It was found from the experimental results that copper, aluminum and carbon fiber were good candidates as a shielding material against the EM waves with increasing the SE as the composite was laminated. The characteristics of the SE against the EM waves depended on a mode of preparation of specimen. The effects of interval of wires on the SE were studied when the orientation and the space of Cu wires were changed. The SE strongly depended on the. orientation and the space of the Cu wire. SE decreased as the space of the Cu wires was increasing.

Characteristics of $Cu_2ZnSnSe_4$ Thin Film Solar Absorber Prepared by PLD using Solid Target (광흡수층 적용을 위한 PLD용 $Cu_2ZnSnSe_4$ 타겟 제조와 증착 박막의 특성)

  • Jung, Woon-hwa;Rachmat, Adhi Wibowo;Kim, Kyoo-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.130-133
    • /
    • 2009
  • $Cu_2ZnSnSe_4$(CZTSe) is one of the promising materials for the solar cell due to its abundant availability in the nature. In this study, we report the fabrication of CZTSe thin film by Pulsed Laser Deposition(PLD) method using quaternary compound target on sodalime glass substrate. The quaternary CZTSe compound target was synthesized by solid state reaction method using elemental powders of Cu, Zn, Sn and Se. Powders were milled in high purity ethanol using zirconia ball with mixed size of 1 and 3 mm at the same proportions for 72 hours milling time. The structural, chemical and mechanical properties of the synthesized CZTSe powders were investigated prior to the deposition process. The CZTSe compound powder, and $500^{\circ}C$ of sintering temperature shows the best properties for PLD target. Results show that the as-deposited CZTSe thin films with the precursors by PLD have a composition near-stoichiometric.

  • PDF

The Surface Characteristics of Ti/TiN Film Coated Sintered Stainless Steels by EB-PVD Method (EB-PVD법에 의한 Ti/TiN film 코팅된 스테인리스강 소결체의 표면특성)

  • 최한철
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.195-205
    • /
    • 2001
  • The surface characteristics of Ti/TiN films coated on sintered stainless steels (SSS) by electron beam physical vapour deposition (EB-PVD) were investigated. Stainless steel compacts containing 2, 4, and 10wt%Cu were prepared by the electroless Cu-plating method, which results in increased homogenization in the alloying powder. The specimens were coated with Ti and TiN with a 1.0$\mu\textrm{m}$ thickness respectively by EB-PVD. The microstructures were investigated using scanning electron microscopy (SEM). The corrosion behaviors were investigated using a potentiosat in 0.1 M $H_2$$SO_4$, and 0.1M HCl solutions and the corrosion surface was observed using SEM and XPS. The Ti coated specimens showed rough surface compared to Ti/TiN coated specimens. Ti and Ti/TiN coated SSS revealed a higher corrosion and pitting potential from anodic polarization curves than that of Ti and Ti/TiN uncoated SSS. In addition, Ti/TiN coated SSS containing 10wt% Cu exhibited good resistance to pitting corrosion due to the formation of a dense film on the surface and the decrease in interconnected porosity by electroless coated Cu.

  • PDF

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.

Influences to Additive Type on Carbon Nanotube metal composite (첨가제 종류에 따른 탄소나노튜브 금속복합재료 소결코팅 영향)

  • Kim, Dea-Hea;Zheng, XI-Ru;Kim, Myin-Su;Park, Chan-Woo
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.159-163
    • /
    • 2012
  • The coating of metal surface with carbon nanotubes(CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The multiwalled carbon nanotube/copper oxide(CuO) composite powder, which has been surface modified by dispersant and polyvinyl alcohol solution, was ultrasonically sprayed and sintered on a copper wafer. In this paper, experiments were performed to assess the characterization and comparison of the carbon nanotube before and after sinterning and the morphology changes of the CNT/CuO-coated surface by using different dispersants. The dispersants used are THF (Tetrahydrofuran), SDBS(Dodecylbenzenesulfonic acid sodium salt), SDS(Sodium dodecy sulfate). The samples were examined by scanning electron microscopy(SEM), thermogravimetric analysis(TGA), differential scanning calorimeter(DSC) and Raman spectroscopy.