• Title/Summary/Keyword: Cu/Ni/Sn-Ag microbump

Search Result 2, Processing Time 0.014 seconds

Effect of NCF Trap on Electromigration Characteristics of Cu/Ni/Sn-Ag Microbumps (NCF Trap이 Cu/Ni/Sn-Ag 미세범프의 Electromigration 특성에 미치는 영향 분석)

  • Ryu, Hyodong;Lee, Byeong-Rok;Kim, Jun-beom;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.83-88
    • /
    • 2018
  • The electromigration (EM) tests were performed at $150^{\circ}C$ with $1.5{\times}10^5A/cm^2$ conditions in order to investigate the effect of non-conductive film (NCF) trap on the electrical reliability of Cu/Ni/Sn-Ag microbumps. The EM failure time of Cu/Ni/Sn-Ag microbump with NCF trap was around 8 times shorter than Cu/Ni/Sn-Ag microbump without NCF trap. From systematic analysis on the electrical resistance and failed interfaces, the trapped NCF-induced voids at the Sn-Ag/Ni-Sn intermetallic compound interface lead to faster EM void growth and earlier open failure.

Non-conductive Film Effect on Ni-Sn Intermetallic Compounds Growth Kinetics of Cu/Ni/Sn-2.5Ag Microbump during Annealing and Current Stressing (열처리 및 전류인가 조건에서 Cu/Ni/Sn-2.5Ag 미세범프의 Ni-Sn 금속간화합물 성장 거동에 미치는 비전도성 필름의 영향 분석)

  • Kim, Gahui;Ryu, Hyodong;Kwon, Woobin;Son, Kirak;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.81-89
    • /
    • 2022
  • The in-situ electromigration(EM) and annealing test were performed at 110, 130, and 150℃ with a current density of 1.3×105 A/cm2 conditions to investigate the effect of non-conductive film (NCF) on growth kinetics of intermetallic compound (IMC) in Cu/Ni/Sn-2.5Ag microbump. As a result, the activation energy of the Ni3Sn4 IMC growth in the annealing and EM conditions according to the NCF application was about 0.52 eV, and there was no significant difference. This is because the growth rate of Ni-Sn IMC is much slower than that of Cu-Sn IMC, and the growth behavior of Ni-Sn IMC increases linearly with the square root of time, so it has the same reaction mechanism dominated by diffusion. In addition, there is no difference in the activation energy of the Ni3Sn4 IMC growth because the EM resistance effect of the back stress according to the NCF application is not large.