• 제목/요약/키워드: Cu/Low-k

검색결과 1,313건 처리시간 0.03초

Sn-CU계 다원 무연솔더의 미세구조와 납땜특성 (Microstructures and Solderability of Multi-composition Sn-Cu Lead-free Solders)

  • 김주연;배규식
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.598-603
    • /
    • 2005
  • To develope new lead-free solders with the melting temperature close to that of Sn-37Pb$(183^{\circ}C)$, Sn-0.7Cu-5Pb-1Ga, Sn-0.7Cu-5Pb-1Ag, Sn-0.7Cu-5Pb-5Bi-1Ag, and Sn-0.7Cu-SBi-1Ag alloys were composed by adding low-netting elements such as Ga, Bi, Pb, and Ag to Sn-0.7Cu. Then the melting temperatures, microstructures, wettability, and adhesion properties of these alloys were evaluated. DSC analysis showed that the melting temperature of Sn-0.7Cu-SPb-1Ga was $211^{\circ}C$, and those of other alloys was in the range of $192\~200^{\circ}C$. Microstructures of these alloys after heat-treatment at $150^{\circ}C$ for 24 hrs were basically composed of coarsely- grown $\beta-Sn$ grains, and $Cu_6Sn_5$ and $Ag_3Sn$ intermetallic precipitates. Sn-0.7Cu-5Pb-1Ga and Sn-0.7Cu-5Pb-5Bi-1Ag showed excellent wettability, while Sn-0.7Cu-5Bi-1Ag and Sn-0.7Cu-5Pb-5Bi-1Ag revealed good adhesion strength with the Cu substrates. Among 4 alloys, Sn-0.7Cu-5Pb-5Bi-1Ag with the lowest melting temperature $(192^{\circ}C)$ and relatively excellent wettability and adhesion strength was suggested to be the best candidate solder to replace Sn-37Pb.

CuO를 첨가한 Mg-Zn 페라이트의 저온소결 특성에 관한 연구 (A Study on the Low-Temperature Sintering Characteristic of the Mg-Zn ferrite which added CuO)

  • 권오흥;김도환;최영지
    • 자원리싸이클링
    • /
    • 제14권3호
    • /
    • pp.63-67
    • /
    • 2005
  • 최근 고품위 TV 및 고정세도 디스플레이용으로 화상의 정세도를 향상시키기 위해 수평주파수를 높이려는 경향이 있어, 편향 요크용 페라이트 코아에는 고주파수 영역에 있어서도 코아로스가 낮은 재료가 요구되고 있는 실정이다. Mg-Zn 페라이트에 있어서 화학조성 및 프로세스가 미세구조에 미치는 영향에 착안하여 저온 소결화를 하였다. 저손실인 Mg-Zn계 te에 Cu에 첨가하였다. MgO, ZnO, Fe$_2O_3$, CuO를 선택한 후 조성비의 변화를 두며 CuO를 MgO로 치환하였다. 이 시료를 980$^{\circ}C$~1350$^{\circ}C$까지 3시간 소결하고, 투자율, 전력손실, 수축률, 코아로스를 측정하였다.

베이나이트계 고강도강의 미세조직과 기계적 특성에 미치는 B 및 Cu 첨가의 영향 (Effects of B and Cu Additions on the Microstructure and Mechanical Properties of High-Strength Bainitic Steels)

  • 임현석;이승용;황병철
    • 열처리공학회지
    • /
    • 제28권2호
    • /
    • pp.75-81
    • /
    • 2015
  • Effects of B and Cu additions on the microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of high-strength bainitic steels with different B and Cu contents were fabricated by thermo-mechanical control process composed of controlled rolling and accelerated cooling. The microstructures of the steels were analyzed using optical and transmission microscopy, and the tensile and impact tests were conducted on them in order to investigate the correlation of microstructure with mechanical properties. Depending on the addition of B and Cu, various low-temperature transformation products such as GB (granular bainite), DUB (degenerated upper bainite), LB (lower bainite), and LM (lath martensite) were formed in the steels. The addition of B and Cu increased the yield and tensile strengths because of improved hardenability and solid solution strengthening, but decreased the ductility and low-temperature toughness. The steels containing both B and Cu had a very high strength above 1.0 GPa, but showed a worse low-temperature toughness of higher DBTT (ductile-to-brittle transition temperature) and lower absorbed energy. On the other hand, the steels having GB and DUB showed a good combination of tensile and impact properties in terms of strength, ductility, yield ratio, absorbed energy, and DBTT.

Cu50-Fe50 합금의 제조 및 특성평가 (Fabrication and characterization of Cu50-Fe50 alloy)

  • 이정일;딜리람;팽종민;조현수;양수민;류정호
    • 한국결정성장학회지
    • /
    • 제28권4호
    • /
    • pp.175-178
    • /
    • 2018
  • 구리 금속은 높은 열전도도로 heat sink 혹은 heat exchanger로 널리 사용되고 있다. 그러나 이에 반하여 낮은 인장강도와 사용온도 한계를 가지고 있다. 따라서 높은 열전도도, 낮은 제작비와 함께 우수한 기계적 특성이 요구된다. 본 연구에서는 이를 위하여 동철합금($Cu_{50}-Fe_{50}$ alloy)를 고주파 가열로를 이용하여 제조하고 그 특성을 조사하였다. 제조된 동철합금은 Cu, ${\alpha}$-Fe, ${\gamma}$-Fe 결정구조를 기진 dendrite 미세구조를 보여주었다. 제조된 동철합금은 XRD, FE-SEM, EDS 및 XRF를 이용하여 결정구조 및 미세구조를 분석하였으며 전력공급 접점용 소재로서의 적합성을 확인하고자 하였다.

New Path-Setup Method for Optical Network-on-Chip

  • Gu, Huaxi;Gao, Kai;Wang, Zhengyu;Yang, Yintang;Yu, Xiaoshan
    • ETRI Journal
    • /
    • 제36권3호
    • /
    • pp.367-373
    • /
    • 2014
  • With high bandwidth, low interference, and low power consumption, optical network-on-chip (ONoC) has emerged as a highly efficient interconnection for the future generation of multicore system on chips. In this paper, we propose a new path-setup method for ONoC to mitigate contentions, such as packets, by recycling the setup packet halfway to the destination. A new, strictly non-blocking $6{\times}6$ optical router is designed to support the new method. The simulation results show the new path-setup method increases the throughput by 52.03%, 41.94%, and 36.47% under uniform, hotspot-I, and hotspot-II traffic patterns, respectively. The end-to-end delay performance is also improved.

Microstructural Feature of Full-densified W-Cu Nanocomposites Containing Low Cu Content

  • Lee, Jai-Sung;Jung, Sung-Soo;Choi, Joon-Phil;Lee, Geon-Yong
    • 한국분말재료학회지
    • /
    • 제20권2호
    • /
    • pp.138-141
    • /
    • 2013
  • The microstructure evolution during sintering of the W-5 wt.%Cu nanocomposite powders was investigated for the purpose of developing a high density W-Cu alloy. The W-5 wt.%Cu nanopowder compact, fully-densified during sintering at 1623 K, revealed a homogeneous microstructure that consists of high contiguity structures of W-W grains and an interconnected Cu phase located along the edges of the W grains. The Vickers hardness of the sintered W-5 wt.%Cu specimen was $427{\pm}22$ Hv much higher than that ($276{\pm}19$ Hv) of the conventional heavy alloy. This result is mostly due to the higher contiguity microstructure of the W grains compared to the conventional W heavy alloy.

Atom Transfer Radical Polymerization of Hexadecyl Acrylate Using CuSCN as the Catalyst

  • Xu, Wenjian;Zhu, Xiulin;Cheng, Zhenping;Chen, Jianying;Lu, Jianmei
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.32-37
    • /
    • 2004
  • The atom transfer radical polymerization (ATRP) of hexadecyl acrylate (HDA) was carried out in Ν,Ν-dimethylformamide (DMF) in the presence of CuSCN/Ν,Ν,Ν′,Ν"Ν"-pentamethyldiethylenetriamine (PMDETA). The results indicate that the polymerization is well-controlled: a linear increase of molecular weights occurs with respect to conversion and the polydispersities are relatively low. In particular, the use of CuSCN as the catalyst resulted in faster polymerization rates for hexadecyl acrylate than did those using either CuBr or CuCl; the polydis-persity, however, was larger than those obtained in the cases when CuBr and CuCl were used. In addition, we report the thermodynamic data and activation parameters for the solution ATRP of hexadecyl acrylate.

Cu와 Cu-Zn 합금의 저주기피로 동안 발달한 미세조직 평가를 위한 비파괴기술 (Nondestructive Techniques for Characterization of Microstructural Evolution during Low Cycle Fatigue of Cu and Cu-Zn Alloy)

  • 김정석;장경영;현창용
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.32-39
    • /
    • 2011
  • 본 연구에서는 Cu와 Cu-Zn 합금의 저주기 피로 동안 발달한 전위 하부조직의 변화를 비파괴적으로 구분하고 평가하고자 하였다. 비파괴시험으로 초음파속도, 전기비저항 그리고 양성자소멸시간을 측정하였다. 서로 다른 적층결함 에너지를 갖는 Cu와 Cu-Zn에 대해 반복피로시험을 수행하고 이들 재료에서의 전위거동과 비파괴평가 파라미터와의 상관성을 연구하였다. Cu는 전위셀 하부구조를 형성하였지만, Cu-Zn 합금은 피로 사이클에 따라서 전위밀도는 증가하고 단지 평면배열의 전위구조를 형성하였다. 상온에서의 반복적인 피로에 의해 발달한 격자결함인 전위와 공공으로 인해 초음파속도의 감소, 전기비저항의 증가 그리고 양성자 소멸시간이 증가하였다. 비파괴평가파라미터의 지속적인 변화를 보이는 평면배열의 전위구조를 갖는 Cu-Zn에서와 달리, Cu에서는 전위셀구조가 발달하면서 더 이상의 큰 변화를 보이지 않았다.

Emulsion 건조방법에 의한 고온초전도체 분말제조 (Preparation of High Tc Superconductor Powders by Emulsion Drying Method)

  • 엄우식;김호기
    • 한국재료학회지
    • /
    • 제1권2호
    • /
    • pp.71-76
    • /
    • 1991
  • The superconducting powders in $YBa_2Cu_3O_{7-x}$ and Bi-Pb-Sr-Ca-Cu-O system were easily prepared from water in oil type emulsion by loading each cation into the aqueous phase. In $YBa_2Cu_3O_{7-x}$ system, the superconducting orthorhombic phase was formed by calcining at $750^{\circ}C$ for 10h in $O_2$. The size of the superconducting phase powders was submicron. The density of the sintered specimen using this powders was about 95% of the theoretical density and the resistance sharply decreases at about 90K, In Bi-Pb-Sr-Ca-Cu-O system the low Tc phase($(Bi, Pb)_2Sr_2Ca_1Cu_2O_y$) was formed by calcining at $800^{\circ}C$ for 10h in a low oxygen partial pressure of 1/20 atm The shape of clacined powder is thin plate of which size is about $2\mu\textrm{m}$ and thickness is smaller than $\mu\textrm{m}$. It was observed that the high Tc phase ($(Bi, Pb)_2Sr_2Ca_2Cu_3O_y$) was formed by sintering at $850^{\circ}C$ for 30h in oxygen pressure of 1/20 atm without intermediary grinding. The above sintered sample exhibited superconductivity with a Tc(zero)=105K.

  • PDF

The Bonding Nature and Low-Dimensional Magnetic Properties of Layered Mixed Cu(II)-Ni(II) Hydroxy Double Salts

  • Park, Seong-Hun;Huh, Young-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권3호
    • /
    • pp.768-772
    • /
    • 2013
  • Layered mixed metal hydroxy double salts (HDS) with the formulas $(Cu_{0.75}Ni_{0.25})_2(OH)_3NO_3$ ((Cu, Ni)-HDS) and $Cu_2(OH)_3NO_3$ ((Cu, Cu)-HDS) were prepared via slow hydrolysis reactions of CuO with $Ni(NO_3)_2$ and $Cu(NO_3)_2$, respectively. The crystal structures, morphologies, bonding natures, and magnetic properties of (Cu, Ni)-HDS and (Cu, Cu)-HDS were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and a superconducting quantum interference device (SQUID). Even though (Cu, Ni)-HDS has a similar layered structure to that of (Cu, Cu)-HDS, the bonding nature of (Cu, Ni)-HDS is slightly different from that of (Cu, Cu)-HDS. Therefore, the magnetic properties of (Cu, Ni)-HDS are significantly different from those of (Cu, Cu)-HDS. The origin of the abnormal magnetic properties of (Cu, Ni)-HDS can be explained in terms of the bonding natures of the interlayer and intralayer structures.