• Title/Summary/Keyword: Cu/Low-k

Search Result 1,313, Processing Time 0.03 seconds

Study on the Sintering Temperature and Electrical Properties of CuO Doped (Ba0.5,Sr0.5)TiO3 Ceramics (CuO를 첨가한 (Ba0.5,Sr0.5)TiO3 세라믹의 소결온도와 전기적 특성의 연구)

  • Yun, Seok-Woo;Lee, Ku-Tak;Kang, Ey-Goo;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.454-457
    • /
    • 2010
  • The influence of CuO addition on what of the $(Ba,Sr)TiO_3$ ceramics was studied. The sintering temperature of $(Ba,Sr)TiO_3$ ceramics was lowered by the addition of CuO additives. The 1 - 5 wt% CuO were selected and employed as the sintering aids. Low-Temperature Co-fired Ceramic technologies are popular technologies used in the manufacture of microwave devices. In this study, crystalline and electrical properties of CuO doped $(Ba,Sr)TiO_3$ ceramics were investigated to determine the low temperature sintering properties. The addition of CuO to $(Ba,Sr)TiO_3$ lowered the sintering temperature from $1350^{\circ}C$ to $1150^{\circ}C$. The dependence of the sintering temperature shrinkage rate and mechanism of CuO doped $(Ba,Sr)TiO_3$ ceramics are investigated and discussed. Also, the crystalline structure of CuO - doped $(Ba,Sr)TiO_3$ ceramics is discussed by the X-ray diffraction (XRD) method.

Reaction Route to the Crystallization of Copper Oxides

  • Chen, Kunfeng;Xue, Dongfeng
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • Copper is an important component from coin metal to electronic wire, integrated circuit, and to lithium battery. Copper oxides, mainly including $Cu_2O$ and CuO, are important semiconductors for the wide applications in solar cell, catalysis, lithium-ion battery, and sensor. Due to their low cost, low toxicity, and easy synthesis, copper oxides have received much research interest in recent year. Herein, we review the crystallization of copper oxides by designing various chemical reaction routes, for example, the synthesis of $Cu_2O$ by reduction route, the oxidation of copper to $Cu_2O$ or CuO, the chemical transformation of $Cu_2O$ to CuO, the chemical precipitation of CuO. In the designed reaction system, ligands, pH, inorganic ions, temperature were used to control both chemical reactions and the crystallization processes, which finally determined the phases, morphologies and sizes of copper oxides. Furthermore, copper oxides with different structures as electrode materials for lithium-ion batteries were also reviewed. This review presents a simple route to study the reaction-crystallization-performance relationship of Cu-based materials, which can be extended to other inorganic oxides.

Investigation of the Ni/Cu metallization for high-efficiency, low cost crystlline silicon solar cells (고효율, 저가화 실리콘태양전지를 위한 Ni/Cu/Ag 금속전극의 특성 연구)

  • Lee, Ji-Hun;Cho, Kyeng-Yeon;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.235-240
    • /
    • 2009
  • Crystlline silicon solar cells markets are increasing at rapid pace. now, crystlline silicon solar cells markets screen-printing solar cell is occupying. screen-printing solar cells manufacturing process are very quick, there is a strong point which is a low cost. but silicon and metal contact, uses Ag & Al pates. because of, high contact resistance, high series resistance and sintering inside process the electric conductivity decreases with 1/3. and In pastes ingredients uses Ag where $80{\sim}90%$ is metal of high cost. because of low cost solar cells descriptions is difficult. therefore BCSC(Buried Contact Solar Cell) is developed. and uses light-induced plating, ln-line galvanization developed equipments. Ni/Cu matel contact solar cells researches. in Germany Fraunhofer ISE. In order to manufacture high-efficiency solar cells, metal selections are important. metal materials get in metal resistance does small, to be electric conductivity does highly. efficiency must raise an increase with rise of the curve factor where the contact resistance of the silicon substrate and is caused by few with decrement of series resistance. Ni metal materials the price is cheap, Ti comes similar resistance. Cu and Ag has the electric conductivity which is similar. and Cu price is cheap. In this paper, Ni/Cu/Ag metal contact cell with screen printing manufactured, silicon metal contact comparison and analysis.

  • PDF

Microstructure and Electrical Conductivity of Cu-16 at % Ag Microcomposite (Cu-16 at % Ag 미세복합재료의 미세구조와 전도도)

  • Im, Mun-Su;An, Jang-Ho;Hong, Sun-Ik
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.569-576
    • /
    • 1999
  • In this study, the effect of the microstructural evolution on the electrical of Cu-Ag microcomposite was investigated. The nature of interfaces between silver filaments and Cu matrix may have pronounced effects on the physical properties of Cu-Ag filamentary microcomposites, little is known about these interfaces. In heavily drawn Cu-Ag filamentary microcomposities, the microstructure is too fine and the interfacial area is too large to maintsin a stable internal dislocation structure because of closely spaced filaments. Rather, most dislocations are thought to be gradually absorbed at the interfaces as the draw ratio increases. The mechanical and electrical properties of Cu-Ag filamentary microcomposites wires were also examined and correlated with the microstructural change caused by thermomechanical treatments. The study on the electrical conductivity combined to resistivity in Cu-Ag filamentary microcomposites and the rapid increase of the electrical conductivity at high annealing temperatures is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities at 295K($\rho$\ulcorner/$\rho$\ulcorner) in as-drawn Cu-Ag microcomposites can also be explained by the contribution of the interface scattering.

  • PDF

MAGNETORESISTANCE OF NiFeCo/Cu/NiFeCo/FeMn MULTILAYERED THIN FILMS WITH LOW SATURATION FIELD

  • Bae, S.T.;Min, K.I.;Shin, K.H.;Kim, J.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.570-574
    • /
    • 1995
  • Magnetoresistance of NiFeCo/Cu/NiFeCo/FeMn uncoupled exchange biased sandwiches has been studied. The magnetoresistance change ratio, ${\Delta}R/R_{s}$ showed 4.1 % at a saturation field as low as 11 Oe in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(23\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. In this system, the magnetoresistance was affected by interlayer material and thickness. When Ti and Cu were used as the interlayer material in this structure, maximum magnetoresistance change ratio were 0.32 % and 4.1 %, respectively. 6.1 % MR ratio was obtained in $Si/Ti(50\;{\AA})/NiFeCo(70\;{\AA})/Cu(15\;{\AA})/NiFeCo(70\;{\AA})/FeMn(150\;{\AA})/Cu(50\;{\AA})$ spin valve structure. The magnetoresistance change ratio decreased monotonically as the interlayer thickness increased. It was found that the exchange bias field exerted by FeMn layer to the adjacent NiFeCo layer was ~25 Oe, far smaller than that reported in NiFe/Cu/NiFe/FeMn spin valve structure(Dieny et. al., ~400 Oe). The relationship between the film texture and exchange anisotropy ha been examined for spin valve structures with Ti, Cu, or non-buffer layer.

  • PDF

Use of a capacitance voltage technique to study copper drift diffusion in low-k polyimide (C-V Technique을 이용한 low-k polyimide로의 구리의 drift diffusion 연구)

  • Choi, Yong-Ho;Lee, Heon-Yong;Kim, Jee-Gyun;Kim, Jung-Woo;Kim, Yoo-Kyuong;Park, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.137-140
    • /
    • 2003
  • Cu+ ions drift diffusion in different dielectric materials is evaluated. The diffusion is investigated by measuring shift in the flatband voltage of capacitance/voltage measurements on Cu gate capacitors after bias temperature stressing. At a field of 1.lMV/cm and temperature $200^{\circ}C$, $250^{\circ}C$, $300^{\circ}C$ for 1H, 2H, 5H. The Cu+ ions drift rate of polyimide$(2.8{\leq}k{\leq}3.2)$ is considerably lower than thermal oxide. Also Cu+ drift rate of polyimide is similar to PECVD oxide. But, polyimide film is even more resistant to Cu drift diffusion and thermal effect than Thermal oxide, PECVD oxide: This results got a comparative reference. The important conclusion is that polyimide film is strongly dielectric material by thermal effect and Cu drift diffusion.

  • PDF

THE EFFECT OF Cu SUBSTITUTION ON THE PROPERTIES OF NiZn FERRITE

  • Nam, J.H.;Jung, H.H.;Shin, J.Y.;Oh, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.548-551
    • /
    • 1995
  • The effect of Cu substitution on the properties of NiZn ferrites sintered at low temperature with composition is investigated. The densification of NiCuZn ferrite in dependent upon Cu content in the composition of (N/sub 0.5-x/Cu/sub x/ Zn/sub 0.5/O)(Fe/sub 2/O/sub 3/)/sub 0.98/. Electrical resistivity is maximum at x=0.2. Dispersion characteristics of complex permeability of (Ni/sub 0.5-x/ Cu/sub x/Zn/sub 0.5/O)(Fe/sub 2/O/sub 3)/sub 0.98/ is observed above x=0.3 and relaxation frequency increases with higher temperature. The magnetic loss of NiCuZn ferrite is occurred above the Cu content x=0.3 at a low frequency.

  • PDF

Fabrication of Copper Films by RF Magnetron Sputtering (스퍼터링법에 의한 Cu막 형성 기술)

  • Kim, Hyun-Sik;Song, Jae-Sung;Jeong, Soon-Jong;Oh, Young-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1648-1650
    • /
    • 1996
  • In present paper, Cu films $4{\mu}m$, thick were fabricated by dual deposition methods using RF magnetron sputtering on Si wafer. The dependence of the electrical resistivity, adherence, and reflection in Cu films [$Cu_{4-x}$(low resistivity) / $Cu_x$(high adherence) / Si- wafer] on the x thickness have been investigated. Cu films of $4{\mu}m$ thickness formed with dual deposition methods had the low electrical resistivity of about $2.6{\mu}{\Omega}{\cdot}cm$ and high adherence of about 700g/cm. In conclusion, it is possible for these films to be used for micro-devices.

  • PDF

Effect of CuO on low temperature sintering characteristics (CuO가 PSN-PZT세라믹스의 저온소결특성에 미치는 영향)

  • Woo, Won-Hee;Ryu, Sung-Lim;Yoo, Ju-Hyun;Park, Chang-Yub;Yoon, Hyung-Sang;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.232-235
    • /
    • 2003
  • In this study, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, dielectric and piezoelectric properties of PSN-PZT ceramics were investigated as a function of CuO addition, At the 0.6wt% CuO added specimen sintered at $920^{\circ}C$, the most excellent mechanical quality factor and electromechanical coupling factor were obtained.

  • PDF

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy

  • Chen, Lei;Li, Ping;Wen, Yumei
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.211-215
    • /
    • 2011
  • The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.