• Title/Summary/Keyword: Crystallographic

Search Result 1,384, Processing Time 0.025 seconds

Electron Paramagnetic Resonance Study of impurity Fe3+ ion in LiTaO3 single crystal (Fe3+ 불순물이 첨가된 LiTaO3 단결정에서의 전자 상자성 공명 연구)

  • Min, S.G.;Yeon, T.H.;Lee, S.H.;Lee, M.K.;Shin, H.K.;Yu, Y.M.;Kim, T.H.;Yu, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.171-175
    • /
    • 2003
  • Electron paramagnetic resonance (EPR) of Fe$^{3+}$ in LiTaO$_3$ single crystal, grown by Czochralski method, has been studied by employing an X-band spectrometer. Resonance spectra of Fe$^{3+}$ ion on the crystallographic principal axes were obtained with 9.447 ㎓ at room temperature. The spectroscopic splitting parameter g and zero-field splitting (ZFS) parameter D (= 3 B$_{2}$sup 0/) are calculated with effective spin Hamiltonian. Fe$^{3+}$ center in stoichometric single crystal turns out to be different with that in congruent single crystal reported previously. From the analysis of temperature dependence of resonance fields for Fe$^{3+}$ ion, there is no any phase transition at the temperature range (from -160 $^{\circ}C$ to 20 $^{\circ}C$).

Single-crystal Structure of Fully Dehydrated and Largely NH4+-exchanged Zeolite Y (FAU, Si/Al = 1.70), │(NH4)60Na11│[Si121Al71O384]-FAU

  • Seo, Sung-Man;Kim, Ghyung-Hwa;Kim, Young-Hun;Wang, Lian-Zhou;Lu, Gao-Qing;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.543-550
    • /
    • 2009
  • The single-crystal structure of largely ammonium-exchanged zeolite Y dehydrated at room temperature (293 K) and 1 ${\times}\;10^{-6}$ Torr. has been determined using synchrotron X-radiation in the cubic space group $Fd\overline{3}m\;(a=24.9639(2)\AA)$ at 294 K. The structure was refined to the final error index $R_1$ = 0.0429 with 926 reflections where $F_o>4\sigma(F_o)$; the composition (best integers) was identified as |$(NH_4)_{60}Na_{11}$|[$Si_{121}Al_{71}O_{384}$]-FAU. The 11 $Na^{+}$ ions per unit cell were found at three different crystallographic sites and 60 ${NH_4}^{+}$ ions were distributed over three sites. The 3 $Na^{+}$ ions were located at site I, the center of the hexagonal prism ($Na-O\;=\;2.842(5)\;\AA\;and\;O-Na-O\;=\;85.98(12)^{\circ}$). The 4 $Na^{+}$ and 22 ${NH_4}^{+}$ ions were found at site I' in the sodalite cavity opposite the double 6-rings, respectively ($Na-O\;=\;2.53(13)\;\AA,\;O-Na-O\;=\;99.9(7)^{\circ},\;N-O\;=\;2.762(11)\;\AA,\;and\;O-N-O =\;89.1(5)^{\circ}$). About 4 $Na^{+}$ ions occupied site II ($(Na-O\;=\;2.40(4)\;\AA\;and\;O-Na-O\;=\;108.9(3)^{\circ}$) and 29 ${NH_4}^{+}$ ions occupy site II ($N-O\;=\;2.824(9)\;\AA\;and\;O-N-O\;=\;87.3(3)^{\circ}$) opposite to the single 6-rings in the supercage. The remaining 9 ${NH_4}^{+}$ ions were distributed over site III' ($N-O\;=\;2.55(3),\;2.725(13)\;\AA\;and\;O-N-O\;=\;94.1(13),\;62.16(15),\;155.7(14)^{\circ}$).

Development of Frequency Weighing Sensor and Single Crystal Growth (새로운 무게센서 재발과 단결정성장(1))

  • Jang Y.N.;Sung N.H.;Chae S.C.;Bae I.K.;Kim I.J.
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 1997
  • A new weighing sensor for the automatic diameter control system of the crystal growth is developed in this study. This weighing sensor measures the frequency of the vibrating element which is lineally changing with respect to weight. The signal and the power of this system are transmitted without any physical contact, so that this sensor offers high accuracy and resolution. This system consists of a string, a sinusoidal wave generator, an automatic amplification adjusting circuit, signal transformers and a PCB. 4 kinds of programs are developed for checking DAC, weight calibration and controlling growth process. The measurements of the standard deviation and the resolution show $\pm0.10g$(measured at every second) and $5{\times}10^{-5}$, respectively, This weighing sensor is effective under high pres-sure of 200 atm, high temperature and vacuum condition. The weighing system can control the temperature in the accuracy of $\pm0.025^{\circ}C$ with the 'signal divider'. The optical quality single crystals of $(YGd)_3Sc_2Ga_3O_{12},\;Er-Y_3Sc_2Al_3O_{12},\;and\;Bi_{12}GeO_{20}$ have been grown by Czo-chralski method using this auto-diameter control system.

  • PDF

The effect of Thermal Distribution on $LaSc_3(BO_3)_4$ Crystal Growth by Cz Method ($LaSc_3(BO_3)_4$ 단결정 성장조건)

  • 장영남;배인국
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • The rare-earth orthoborate family, RM3(BO3)4 is known to be the most promising material for the microlaser host. To grow LaSc3(BO3)4 single crystal, the phase relation of the system LaBO3-ScBO3 was investigated by DTA method. LaSc(BO3)4 was the unique intermediate compound in the binary system the peritectic reaction point of which was 1495 ±2℃. Owing to the peritectic behavior of the compound, the crystal growth of the rare-earth Sc-borate was carried out by pulling from the melt-soultion of La1+xSc3-x(BO3)4. The optimal conditions for the growth of LaSc3(BO3)4 were determined by traditional CZ method : pulling speed 0.7mm/hr, rotation speed 7-10 rpm under reduction condition. Pt and Ir crucibles could be used for about 8-10 times of growth. The effect of thermal configurations on the temperature distribution was investigated. A special two-coordinate manipulator was made for the precise movement of thermocouples from the melt to the top of the furnace for several thermal configurations. The radial gradient on the melt surface depends strongly on the construction of the afterheater. On the other hand, the axial gradient was mainly propotional to both the opening degree of baffle plate and the mutual positions of crucible and heater.

  • PDF

The Crystal Structure of an Iondine Sorption Complex of Dehydrated Calcium and Silver Exchanged Zeolite A ($Ag^+$이온과 $Ca^{2+}$이온으로 치환한 제올라이트 A를 탈수한 후 요오드를 흡착한 결정구조)

  • Bae, Myung-Nam;Kim, Yang;Kim, Un-Sik
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.118-124
    • /
    • 1995
  • The crystal structure of an iodine sorption complex of vacumm-dehydrated Ag+ and Ca2+ exchanged zeolite A(a=12.174(3)Å) has been determined at 21℃ by single-crystal X-ray diffraction techniques in the cubic space group Pm3m. The crystal was prepared by flow method for three days using exchange solution in solution in which mole ratio of AgNO3 and Ca(NO3)2 was 1:150 with total concentration of 0.05 M. The complex was prepared by dehydration at 360℃ and 2×10-6 Torr for 2 days, followed by exposure to about 14.3 Torr of iodine vaporat 80℃ for 24 hours. Full-matrix least-squares refinement converged to the final error indices of R1=0.082, R2=0.068 using 122 reflections for which I > 3σ(I). Two Ag+ ions, 1.1 Ag+ ions, and 4.45 Ca2+ ions per unit cell are located on three different three-fold axes associated with 6-ring oxygens. Two Ag+ ions per unit cell are in the large cavity, 1.399(4)Å from the (111) plane of three oxygens. Another 1.1 Ag+ ions are found at opposite sites. Six iodine molecules are sorbed per unit cell. Each I2 molecule approaches a framework oxide ion axially (O-I=3.43(2)Å, I-I=2.92Å, I-I-O;166.1(3)°), by a charge transfer complex interaction. Two Ag+ ions make a close approach to the iodine molecules (Ag-I ; 2.73(2)Å).

  • PDF

The Solvent-Independent Structure of 6-(2-pyridyl)-3, 5-hexadiyn-1-ol (6-(2-pyridyl)-3, 5-hexadiyn-1-ol의 용매 비의존 분자구조)

  • 서일환;이진호
    • Korean Journal of Crystallography
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 1995
  • Two types of single crystals of the title compound [6-(2-pyridyl)-3, 5-hexadiyn-ol, PyHxD] were obtained by solution of n-hexane/CH2C12 and n-hexane/Et2O, and their molecular conformations are proved identical in spite of different of space groups; C22H18N2O2 (I), Mr=343.70, Monoclinic, Pa, a=14.595(2), b=5.413(2), c=12.218(2)Å, β=96.86(1)°, V=958.3Å3, Z=2, Dx=1.19 Mgm-3, λ(MoKα)=0.71069Å, μ=0.072mm-1, F(000)=360.0, T=292K, R=0.104 for 756 unique observed reflections. An asymmetric unit contains a dimer connected by two N-H…O intermolecular hydrogen bonds. C11H9NO (II), Mr=171.85, Monoclinic, P21/a, a=14.611(2), b=5.423(6), c=12.191(2)Å, β=96.89(1)°, V=959.0Å3, Z=4, Dx=1.19 Mgm-3, λ(MoKα)=0.71069Å, μ=0.072mm-1, F(000)=360.0, T=293K, R=0.066 for 824 unique observed reflection. The structural asymmetric unit contains a molecule, but two N-H…O hydrogen bonds related by controsymmetry make the molecules form a dimer. In both structure, the dihedral angle between the planar pyridyl ring and the plane defined by C(10)-C(11)-O connected by linear diyne chain is approximately normal, and the molecules are stacked along b-axis with the unit repeat of b-axis.

  • PDF

Study on $CuInTe_2$ Single Crystals Growth and Characteristics(I) ($CuInTe_2$ 단결정 성장과 특성연구(I))

  • 유상하;홍광준
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.44-56
    • /
    • 1996
  • CuInTe2 synthesised in a horizontal electric furnace was found to be polycrystalline. Single crystals of CuInTe2 were grown with the vertical Bridgman technique. The structure, Hall effect of the crystals were measured in the temperature range 30 to 293K. Both the polycrystals and single crystals of CuInTe2 were tetragonal in structure. The lattice constants of the polycrytals were measured as a=6.168Å and c=12.499Å, with c/a=2.026, these of the single crystals were measured as a=6.186Å and c=12.453Å, with c/a=2.013. The growth plane of the oriented single crystals was confirmed to be a (112) plane from the back-reflection Laue patterns. The Hall effect of the CuInTe2 single crystals was measured with the method of van der Pauw The Hall data of the samples measured at room temperature showed a carrier concentration of 2.14×1023holes/m3, a conductivity of 739.58Ω-1m-1, and a mobility of 2.16×10 -2m 2/V·s for the sample perpendicular to the c-axis. Values of 1.51×1023holes/m3, 717.55Ω-1m-1, and 2.97×10-2 m2/V·s were obtained for the sample parallel to the c-axis. The Hall coefficients for the samples both perpendicular and parallel to the c-axis in the temperature range 30K to 293K were always positive values. Thus the CuInTe2 single crystal was determined to be a p-type semiconductor.

  • PDF

The Crystal Structure of Tris(ethylenediamine)nickel(II)-dichromate, $[Ni(C_2N_2H_8)_3]\cdotCr_2O_7$ ($[Ni(C_2N_2H_8)_3]\cdotCr_2O_7$의 결정구조)

  • Kim, Se-Hwan;Kim, Seung-Bin;Nam, Gung-Hae
    • Korean Journal of Crystallography
    • /
    • v.7 no.1
    • /
    • pp.36-43
    • /
    • 1996
  • The crystal structure Tris(ethylenediamine)nickel(II)Dichromate has been determined by X-ray crystallography. Crystal data: a=8.268(2), b=13.865(2), c=14.921(2)Å, γ=102.04(2)°, V=1672.9(5)Å3, Z=4, Monocline, P21/b (space group No.=14), Dcalc=1.806 gcm-3, μ=24.05 cm-0.1. The intensity data were collected with Mo-Kα radiation(λ=0.7107Å) on an automatic four-circle diffractometer with a graphite monochromator. The structure was solved by Patterson method and refined by full matrix least-square methods using unit weights. The final R and S values were R=0.045, Rw=0.051, Rall=0.059 and S=2.171for 2248 observed reflections. The two carbon atoms of a ring of Ni(en)-ion were split into crossed four atoms. In consideration of α- and β-angles of two rings of a disordered ethylenediamine of Nien3-ion and the hydrogen bonds between Ni(en)3-cation and Cr2O7-anion, the configuration of Ni(en)3-ion is assumed to be disordered with Λδδδ and Λδδλ.

  • PDF

Study on $CuInTe_2$ Single Crystals Growth and Characteristics (II) ($CuInTe_2$ 단결정 성장과 특성연구(II))

  • You S.H.;Hong K.J.;Lee S.Y.;Shin Y.J.;Lee K.K.;Suh S.S.;Kim S.U.;Jeong J.W.;Shin Y.J.;Jeong T.S.;Shin B.K.;Kim T.S.;Moon J.D.
    • Korean Journal of Crystallography
    • /
    • v.8 no.1
    • /
    • pp.48-58
    • /
    • 1997
  • [ $CuInTe_2$ ] synthesised in a horizontal electric furnace was found to be polycrystalline. Single crystals of $CuInTe_2$ were grown with the vertical Bridgman technique. The photoconductivity and photoluminescence of the crystals were measured in the temperature range 20 to 293 K. From the photocurrent peaks measured for the samples both perpendicular and parallel to c-axis, the energy band gaps of the samples were found to be 0.948 eV and 0.952 eV at room temperature respectively. The energy difference of the photocurrent and photoluminescence peaks of the samples both perpendicular and parallel to the c-axis measured at room temperature was a phonon energy, and its values were 22.12 meV and 21.4 meV respectively. The splitting of the valence band due to spin-orbit and crystal field interaction was calculated from the photocurrent spectra of the samples, The ${\Delta}cr\;and\;{\Delta}so$ are 0.046,0.014 eV respectively.

  • PDF

Study of Tungsten Nitride Diffusion Barrier for Various Nitrogen Gas Flow Rate by Employing Nano-Mechanical Analysis (Nano-Mechanics 분석을 통한 질화 텅스텐 확산방지막의 질소 유량에 따른 연구)

  • Kwon, Ku Eun;Kim, Sung Joon;Kim, Soo In;Lee, Chang Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.4
    • /
    • pp.188-192
    • /
    • 2013
  • Many studies have been conducted for preventing from diffusion between silicon wafer and metallic thin film due to a decrease of line-width and multi-layer thin film for miniaturization and high integration of semiconductor. This paper has focused on the nano-mechanical property of diffusion barrier which sample is prepared for various gas flow rate of nitrogen with tungsten (W) base from 2.5 to 10 sccm. The deposition rate, resistivity and crystallographic properties were measured by a ${\beta}$-ray back-scattering spectroscopy, 4-point probe and x-ray diffraction (XRD), respectively. We also has investigated the nano-mechanical property using the nano-indenter. As a result, the surface hardness of W-N thin film was increased rapidly from 10.07 to 15.55 GPa when the nitrogen gas flow was increased from 2.5 to 5 sccm. And the surface hardness of W-N thin film had 12.65 and 12.77 GPa at the nitrogen gas flow of 7.5 and 10 sccm respectively. These results were decreased by the comparison with the W-N thin film at nitrogen gas flow of 5 sccm. It was inferred that these severe changes were caused by the stoichiometric difference between the crystalline and amorphous state in W-N thin film. In addition, these results were caused by increased compressive stress.