• Title/Summary/Keyword: Crystallization Kinetics

Search Result 73, Processing Time 0.017 seconds

The Crystallization of ZSM-5 at Low Temperature and Atmospheric Pressure (저온 상압하에서 ZSM-5의 결정화 반응)

  • Kim, Wha Jung;Lee, Myung Churl;Kim, Jo Woong;Ha, Jae Mok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.320-331
    • /
    • 1997
  • ZSM-5 was crystallized at low temperature and atmospheric pressure using reflux unit. The overall molar composition used in this study was $7.83Na_2O-0.25Al_2O_3-100SiO_2-xTPABr-yH_2O$ where x is 1 and 3 mol, and y is 3000 mol, 3500 mol, and 4000 mol. $2^3$ factorial experiments were performed with the results of kinetics studies, showing $Na_2O$, TPABr, and $H_2O$ as main factors. The result suggested that the concentration of $H_2O$ is the most important. The morphology of final product was very uniform showing well-defined crystals with BET surface area of ca. $410m^2/g$.

  • PDF

Insight into Structural Aspects of Histidine 284 of Daphnia magna Arginine Kinase

  • Rao, Zhili;Kim, So Young;Li, Xiaotong;Kim, Da Som;Kim, Yong Ju;Park, Jung Hee
    • Molecules and Cells
    • /
    • v.43 no.9
    • /
    • pp.784-792
    • /
    • 2020
  • Arginine kinase (AK), a bioenergy-related enzyme, is distributed widely in invertebrates. The role of highly conserved histidines in AKs is still unascertained. In this study, the highly conserved histidine 284 (H284) in AK of Daphnia magna (DmAK) was replaced with alanine to elucidate the role of H284. We examined the alteration of catalytic activity and structural changes of H284A in DmAK. The catalytic activity of H284A was reduced dramatically compared to that in wild type (WT). Thus the crystal structure of H284A displayed several structural changes, including the alteration of D324, a hydrogen-bonding network around H284, and the disruption of π-stacking between the imidazole group of the H284 residue and the adenine ring of ATP. These findings suggest that such alterations might affect a conformational change of the specific loop consisting of G310-V322 at the antiparallel β-sheet region. Thus, we speculated that the H284 residue might play an important role in the conformational change of the specific loop when ATP binds to the substrate-binding site of DmAK.

The effect of different crystallization temperature of the hydroxyapatite coating produced by ion beam-assisted deposition on anodizing-treated titanium disks on human osteosarcoma cells (양극산화처리된 티타늄 표면에 이온빔보조증착방식을 이용한 수산화인회석 코팅시 소결온도의 차이가 조골세포에 미치는 영향)

  • Pae, Ah-Ran;Won, Hyun-Du;Lee, Richard Sung-Bok;Kim, Hyeong-Seob;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • Purpose: The aim of this study was to study the effect of hydroxyapatite (HA) coating crystallinity on the proliferation and differentiation of human osteosarcoma cells. Materials and methods: Surface roughness of the titanium disks increased by anodizing treatment and then HA was coated using ion beam-assisted deposition (IBAD). HA coating was crystallized by heat-treated at different temperature ($100^{\circ}C$, $300^{\circ}C$, $500^{\circ}C$, $800^{\circ}C$). According to the temperature, disks were divided into four groups (HA100, HA300, HA500, HA800). With the temperature, crystallinity of the HA coating was different. Anodized disks were used as control group. The physical properties of the disk surface were evaluated by surface roughness tests, XRD tests and SEM. The effect of the crystallinity of HA coating on HOS cells was studied in proliferation and differentiation. HOS cells were cultured on the disks and evaluated after 1, 3, 5, and 7 days. Growth and differentiation kinetics were subsequently investigated by evaluating cell proliferation and alkaline phosphatase activity. Results: Regardless of the heat-treated temperature, there is no difference on the surface roughness. Crystallinity of the HA was appeared in the groups of HA500, HA800. HOS cells proliferation, ALP activity were higher in HA500 and HA800 group than HA100 and HA300. Conclusion: Within the results of this limited study, heat treatment at $500^{\circ}C$ of HA coating produced by IBAD has shown greater effect on proliferation and differentiation of HOS cells. It is considered that further in vivo study will be necessary.