• Title/Summary/Keyword: Crystal structure and symmetry

Search Result 128, Processing Time 0.02 seconds

The Geometrical Isomerization on Acidification in Hexamolybdoheteropoly Oxometalate. The Crystal Structure of $(NH_{4})_{4.5}[H_{3.5}\alpha-PtMo_{6}O_{24}].\;1.5H_{2}O,\;(NH_{4})_{4}[H_{4}\beta-PtMo_{6}O_{24}].\;1.5H_{2}O,\;and\;K_{3.5}[H_{4.5}\alpha-PtMo_{6}O_{24}].\;3H_{2}O$

  • Lee, Uk;Yukiyoshi Sasaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • $(NH_4)_{4.5}[H_{3.5}{\alpha}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(A),\;(NH_4)_4[H_4{\beta}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(B),\;and\;K_{3.5}[H_{4.5}{\alpha}-PtMo_6O_{24}]{\cdot}3\;H_2O(C)$ have been synthesized and their molecular structures have been also determined by single-crystal X-ray diffraction technique. The space groups, unit cell parameters, and R factors are as follows: Compound A, monoclinic, $A_{2/a}$, a= 19.074 (3), b=21.490 (3), c=15.183 (2) ${\AA};\;{\beta}$=109.67 (1) ${\AA}$; z=8; R=0.075($IF_0I>4{\sigma}(IF_0I);$ Compound B, triclinic, P$bar{1}$, a=10.776 (2), b=15.174 (4), c=10.697 (3) ${\AA};\;{\alpha}$ =126.29 (2), ${\beta}$=111.55 (2), ${\gamma}$=93.18 (2) ${\AA}$; Z=2; R=0.046($IF_0I>3{\sigma}(IF_0I);$): Compound C, triclinic, Pl, a=12.426 (2), b=13.884 (2), c=10.089 (1) ${\AA}$; ${\alpha}$=102.59 (2), ${\beta}$=110.73 (1), ${\gamma}$=53.93 (1) ${\AA}$; Z=2; R=0.074 ($IF_0I>3{\sigma}(IF_0I)$. Compounds A and C contain the well-known Anderson structure (planar structure) heteropoly oxometalate having approximate $bar{3}_m(D_{3d})$ symmetry, while compound B contains the bent structure heteropoly oxometalate having appproximate $2_{mm}(C2_v)$ symmetry. The bent structure and the planar one are geometrical isomers. These compounds are rot only novel heteroply molybdates containing platinate(IV) but also the first example of geometrical isomerism in the hexamolybdoheteropoly oxometalates. That isomerization surprisingly occurred because of the change of only 0.5 non-acidic hydrogen atom attached to the polyanion such as $[H_{3.5}{\alpha} -PtMo_6O_{24}]^{4.5-}{\to}[H_4{\beta}-PtMo_6O_{24}]^{4-}{\to}[H_{4.5}{\alpha} -PtMo_6O_{24}]^{3.5-}$. It seems that the gradual protonation of the polyanion plays an important role in that isomerism. These heteropolyanions form dimers by strong hydrogen bonds between two heteropolyanions in the respective crystal system.

Crystal Structure and Molecular Stereochemistry of Novel Polymeric Cu2(DMP)44(DMSO) as a Platform for Phosphate Diester Binding

  • Rafizadeh, Massoud;Tayebee, Reza;Amani, Vahid;Nasseh, Mohammad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.594-598
    • /
    • 2005
  • Treatment of a solution of $CuCl_2$ in dimethyl phosphate (DMP) with DMSO under nitrogen atmosphere afforded to a light blue fluorescence powder. Slow evaporation of $H_2O$-DMSO solution of this powder resulted in blue-sky crystals of a new polymeric Cu(II) complex, with a unit cell composed of $Cu_2(DMP)_4$(DMSO), (1). The crystal and molecular structure of the complex acquired crystallographically. Compound (1) crystallizes in the monoclinic space group $P2_1$/n with a = 12.8920(11) $\AA$, b = 13.1966(11) $\AA$, c = 14.7926(13) $\AA$, $\alpha$ = 90$^{\circ}$, $\beta$ = 98.943(2)$^{\circ}$, $\gamma$ = 90$^{\circ}$, V= 2486.1(4) ${\AA}^3$, and Z = 4. A square pyramidal environment for the metal center was established by coordination of oxygen atoms of four bridging DMP ligands in the basal positions and binding a tri-centered oxygen atom of DMSO in the apical disposition of Cu(II). The sixth position was also affected by a weak interaction with the sulfur atom of another DMSO. The phosphorous atom in the bridging DMP was arranged in a deformed tetrahedron with (gg) conformation for methyl esters with $C_{2v}$ symmetry.

Optical Properties of $CdAl_2S_4 : Co_{2+}$ Single Crystal ($CdAl_2S_4 : Co_{2+}$ 단결정의 광학적 특성)

  • Kim, Hyung-Gon;Kim, Nam-Oh;Son, Kyeong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.382-387
    • /
    • 2000
  • The $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$ single crystals were grown by the chemical transport reaction method using iodine as a transport agent. The $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$single crystals were crystallized into a defect chalcopyrite structure. The optical energy gap of the $CdAl_2S_4 and CdAl_2S_4 : Co^{2+}$ single crystals was found to be 3.377 eV and 2.924 eV, respectively, at 300 K. Blue emission with peaks in 456nm~466nm at 280K was observed in the $CdAl_2S_4$ single crystal. Optical absorption and emission peaks due to impurities in the $CdAl_2S_4 Co^{2+}$ single crystal were observed and described as originating from the electron transition between energy levels of the $Co^{2+} ion sited at the Td symmetry point.

  • PDF

Structural Characterization of Crown Ether Complexed Potassium Ion $(C_{12}H_{24}O_6{\cdot}K)_2K[Co(OH)_6Mo_6O_{18}]{\cdot}12H_2O$

  • Osamu Nagano;Uk Lee;Hikaru Ichida;Yukiyoshi Sasaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 1990
  • The crystal structure of $(C_{12}H_{24}O_6{\cdot}K)_2K[Co(OH)_6Mo_6O_{18}]{\cdot}12H_2O$ has been determined by X-ray diffraction. Crystal data as follows ; monoclinic, space group $C_2/m,\;a\;=\;22.512(4)\;{\AA},\;b\;=\;18.304(4)\;{\AA},\;c\;=\;7.641(1)\;{\AA},\;{\beta}\;=\;90.52(2)\;{\AA}$, and Z = 2. A final conventional R value of 0.044 was obtained by least-squares refinement of 4173 independent observed $[{\mid}Fo{\mid}{\geq}3{\sigma}({\mid}Fo{\mid})]$ reflections. The $[Co(OH)_6Mo_6O_}{18}]^{-3}$ polyanion shows the well-known Anderson-structure and has approximate 3m symmetry. A $[Co(OH)_6Mo_6O_{18}]^{-3}$ polyanion is located between two crown ether complexed cations forming a sandwich structure. One potassium ion interacts with the crown ether via electrostatic interactions. The other potassium ion only interacts with the water molecules and terminal oxygen atoms of the polyanion.

Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)]

  • Hwang, Cheong-Soo;Lee, Na-Rae;Kim, Young-Ah;Park, Youn-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1809-1814
    • /
    • 2006
  • The L-Valinate anion coordinating zinc complex, [$Zn(val)_2(H-2O)$], was isolated and structurally characterized by single crystal X-ray crystallography. The crystal possess orthorhombic symmetry with a space group $P2_12_12_1$, Z = 4, and a = 7.4279(2)$\AA$, b = 9.4342(2)$\AA$, c =20.5862(7)$\AA$ respectively. The compound features a penta-coordinate zinc ion in which the two valine anion molecules are directly coordinating the central zinc metal ion via their N (amine) and O (carboxylate) atoms, and an additional coordination to zinc is made by water molecule (solvent) to form a distorted square pyramidal structure. In addition, further synthesis of the valine capped ZnS:Mn nanocrystal from the reaction of [$Zn(val)_2(H-2O)$] precursor with $Na_2S$ and 1.95 weight % of $Mn^{2+}$ dopant is described. Obtained valine capped nanocrystal was water dispersible and was optically characterized by UV-vis and solution PL spectroscopy. The solution PL spectrum for the valine capped ZnS:Mn nanocrystal showed an excitation peak at 280 nm and a very narrow emission peak at 558 nm respectively. The measured and calculated PL efficiency of the nanocrystal in water was 15.8%. The obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The particle size of the nanocrystal was also measured via a TEM image. The measured average particle size was 3.3 nm.

Crystal Structure of cis-(Malonato)[(4R,5R)-4,5-bis(Aminomethyl)-2-Isopropyl-1,3-Dioxolane]Platinum(II), A Potent Anticancer Agent

  • Cho, Sang-Woo;Yongkee Cho;Kim, Dai-Kee;Wanchul Shin
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • The structure of cis-(malonato)[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane]platinum(II) with a potent anticancer activity has been determined by the X-ray crystallographic method. Crystal data are as follows: Pt(C/sub 11/H/sub 20/N₂O/sub 6/), M/sub 4/=471.38, monoclinic, P2₁, a=7.112(1), b=33.615(3), c=7.135(1)Å, β=116.80(1)°, V=1522.6(3)Å, and Z=4. The two independent molecules with very similar structures are approximately related by pseudo two-fold screw axis symmetry, which makes the monolinic cell look like the orthorhombic cell with one molecule in the asymmetric unit and space group C222₁. The crystal packing mode is similar to that of the analogue with the dimethyl substituents instead of the isopropyl group. The Pt atom is coordinate to two O and two N atoms in a square planar structure. The six-membered chelate ring in the leaving ligand assumes a conformation intermediate between the half chair and the boat forms. The seven-membered ring in the carrier ligand assumes a twist-chair conformation and the oxolane ring assumes an envelope conformation. Crystal packing consists of the extensive hydrogen-bonding network in the two-dimensional molecular layers and weak van der Waals interactions between these layers.

  • PDF

Optical Properties of Undoped and $Ni^{2+}$ -doped $MgIn_2Se_4$ Single Crystals ($MgIn_2Se_4 및 MgIn_2Se_4 : Ni^{2+}$ 단결정 성장의 광학적 특성에 관한 연구)

  • Kim, Hyeong-Gon;Kim, Byeong-Cheol;Sin, Seok-Du;Kim, Deok-Tae;Choe, Yeong-Il;Kim, Nam-O
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.12-17
    • /
    • 1999
  • $MgIn_2Se_4 and MgIn_2Se_4 : Ni^{2+}$ single crystals were grown in the rhombohedral structure by the chemical transport reaction (C.T.R.) method using iodine as a transport agent. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had a direct band gap. The fundamental absorption band edge of these single crystals shift to a shorter wavelength region by decreasing temperature and the temperature dependence of the optical energy gaps in these compounds satisfy Varshni equation. The impurity optical absorption peaks due to nickel are observed in $MgIn_2Se_4 and MgIn_2Se_4 : Ni^{2+}$ single crystal. These impurity optical absorption peaks can be attributed to the electronic transitions between the split energy levels of $Ni_{2+}$ ions located at $T_d$ symmetry site of $MgIn_2Se_4$ host lattice. In the hotoluminescence spectrum of the single crystal at 10 K, a blue emission with a peak at 687nm and a green emission with a peak at 815nm for the $MgIn_2Se_4$ single crystal were observed.

  • PDF

Optical Properties of ZnHgGa4Se8 and ZnHgGa4Se8:Co2+ Single Crystals

  • Lee Choong-Il
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.657-661
    • /
    • 2005
  • [ $ZnHgGa_4Se_8\;and\;ZnHgGa_4Se_8::Co^{2+}$ ] single crystals were grown by the Bridgman-Stockbarger method. The single crystals crystallized into a defect chalcopyrite structure. The optical energy band gap of the single crystals was investigated in the temperature range 11-300K. The optical energy band gap of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was smaller than that of the $ZnHgGa_4Se_8$ single crystal. The temperature dependence of the optical energy band gap of the single crystals was well fitted by the Varshni equqtion. The impurity optical absorption spectrum of the $ZnHgGa_4Se_8:Co^{2+}$ single crystal was measured in the wavelength region 300-2300 m at 80 K. Impurity absorption peaks in the spectrum were analyzed within the framework of the crystal field theory and were attributed to the electron transitions between the energy levels of $Co^{2+}$ sited in the Td symmetry point.

A Study on the LCD(Liquid Crystal Display) Device which have MIM (Meta1-lnsulator- Meta1) Structure (MIM(Metal-Insulator-Metal)구조의 LCD(Liquid Crystal Display)소자 특성 연구)

  • 최광남;이명재;곽성관;정관수;김동식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.209-212
    • /
    • 2001
  • High quality Taros thin films have been obtained from anodizing. The as-deposited amorphous films have excellent physical and electrical properties: refractive indices ~2.15, dielectric constants ~25, and leakage currents <10$^{-8}$ Ac $m^{-2}$ at 1MV $cm^{-1}$ , 700$\AA$ thickness. We fabricated a MIM element with theses T $a_2$ $O_{5}$ films which had perfect current-voltage symmetry characteristics using a new process technology which was post annealing of whole MIM element instead of conventional annealing conditions (top-electrode metals, annealing conditions) on the capacitor performances were extensively discussed throughout this work.k.

  • PDF

Crystal Structure and Spectroscopic Properties of Cyclic Dipeptide: A Racemic Mixture of cyclo(ᴅ-Prolyl-ʟ-Tyrosyl) and cyclo(ʟ-Prolyl-ᴅ-Tyrosyl)

  • Hong, Yong Pyo;Lee, Sung-Hong;Choi, Jong-Ha;Kashima, Ayana;Nakamura, Go;Suzuki, Takayoshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2299-2303
    • /
    • 2014
  • Two diastereoisomers of cyclo(Pro-Tyr) have been synthesized simultaneously. The crystal structures and conformations of both cyclo($\small{L}$-Pro-$\small{L}$-Tyr) and a racemic mixture of cyclo($\small{D}$-Pro-$\small{L}$-Tyr) and cyclo($\small{L}$-Pro-$\small{D}$-Tyr), abbreviated as rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr), have been determined by a single-crystal X-ray diffraction study at low temperature. The crystals of rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr) belong to orthorhombic space group $Pna2_1$ with a = 10.755 (1), b = 12.699 (1), c = 9.600 (1) ${\AA}$ and Z = 4. The tyrosine side chain is folded towards the diketopiperazine (DKP) ring. The DKP ring adopts a twist boat conformation with pseudo symmetry $C_{2v}$. The pyrrolidine ring has an envelope conformation with the N5, C4, C7 and C8 atoms in a plane. The crystal of rac-cyclo($\small{D}$-Pro-$\small{L}$-Tyr/$\small{L}$-Pro-$\small{D}$-Tyr) is stabilized by hydrogen bonds between amide N2-H2 and carbonyl oxygen O2 in the neighbor. The hydroxyl group of tyrosine residue is also hydrogen bonded to the oxygen of the carbonyl group of the DKP ring in the next molecule. The spectroscopic properties of both isomers are also described.