• Title/Summary/Keyword: Crystal protein gene

Search Result 72, Processing Time 0.045 seconds

Synergistic Effect in Mosquitocidal Activity of Crystal Proteins from Bacillus thuringiensis NT0423 Transformed with cryIVD Gene (cryIVD 유전자로 형질전환된 Bacillus thuringiensis NT0423 균주 내독소 단백질의 모기 유충에 대한 독성의 상승효과)

  • 박현우;유용만;오현우;진병래;김인기;강석권
    • Korean journal of applied entomology
    • /
    • v.35 no.1
    • /
    • pp.85-90
    • /
    • 1996
  • Bacillus thuringiensis NT0423 produces quite a typical bipyramidal crystals of a common major band of ca. 130 kDa, and has dual specificity against Lepidoptera and Diptera. To enforce the Diptera-toxicity of B. thuringiensis NT0423, cryND gene was transformed 30 B. thuringiensis NT0423. The transfonnant B. thuringiensis PT1227 was obtained from introduction of pCGl0 into B. thuringiensis NT0423 by electroporation. The result showed that cryND and resident crystal protein genes in transformant were stably expressed with its own shape. Furthermore, the toxicity of B. thuringiensis PT1227 against Diptera was highly enforced, suggesting that the enforced toxicity of B. thuringiensis PT1227 was due to synergistic effect of both introduced and resident crystal proteins in transformant.

  • PDF

Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis (식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝)

  • 이형환;황성희;박유신
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.647-652
    • /
    • 1990
  • The production of delta-endotoxin crystal and the cloning of endotoxin protein gene in Bscillus thuringiensis subsp. kurstaki HD1 strain were studied. The strain produced bipyramidal crystals ($2.9\times 1.0 \mu m$) in their cells during sporulation. The B. thuringiensis contained about 10 plasmid DNA elements ranging from 2.1 to 80 kilobases. The 73 kb plasmid DNA, the 29 kb BamHI fragment and the 7.9 kb Pstl DNA fragment hybridized to the pHL probe. The 7.9 kb fragment was eluted and cloned in the PstI site of pBR322 vector and transformed into E. coli HB101, which produced insecticidal proteins killing Bornbyx mori larvae.

  • PDF

Expression of the crylAcl Gene Under the Control of the Native or the $\alpha$-Amylase Promoters in an Acrystalliferous Bacillus thuringiensis Strain

  • Roh, Jong-Yul;Lee, In-Hee;Li, Jian-Hong;Li, Ming-Shun;Kim, Ho-San;Je, Yeon-Ho;Boo, Kyung-Saeng
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.123-129
    • /
    • 2000
  • Expression of the crylAcl gene of an acrystalliferous Bacillus thuringiensis strain under the control of the native or $\alpha$-amylase gene promoter was investigated. The crylAcl gene was cloned in a B. thuringiensis - E. coli shutle vector, pHT3101, undder the control of either the native promoter (pProAc) or the $\alpha$-amylase promoter from Bacillus subtilis (pAmyAc). These two recombinant plasmids were successfully expressed in B. thuringiensis subsp. kurstaki Cry B. The first transformant (ProAc/CB), harboring pProAc, expressed an about 130 kDa protein begining 24 hr after inoculations just as in the case of the wild type of B. thuringiensis subsp. kurstaki HD-73. The second pAmyAc-transformant (AmyAc/CB) began to express the gene just 6 hr after inoculation, but Western analysis showed that the activity of the $\alpha$-amylase promoter was relatively weaker than that of the native promoter. As expected, their toxicity against Plutella xylostella larvae was dependent on the amount of Cry1Acl protein expressed.

  • PDF

Characterization of Crystal Proteins of Bacillus thuringiensis NT0423 Isolate from Korean Sericultural Farms

  • Kim, Ho-San;Li, Ming-Shun;Roh, Jong-Yul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.115-122
    • /
    • 2000
  • A Bacillus thuringiensis designated NT0423, belonging to B. thuringiensis subsp. aizawai (H 7), was isolated from samples of dust and soil of sericultural farms. B. thuringiensis NT0423 having dualspecificity against Lepidoptera and Diptera produced bipyramidal inclusions consisting of two major polypeptides of approximately 130- and 70-kDa. Proteolytic processing by trypsin and gut juice of Bombyx mori yielded predominant proteins with molecular masses of about 66-kDa. The whole crystal protein of B. thuringiensis NT0423 immunologically was related to that of B. thuringiensis subsp. aizawai. PCR analysis showed that B. thuringiensis NT0423 has at least five crystal protein genes including cryIA(a), cryIA(b), cryIC, cryID and cryIIA, and southern blot was determined the location of each gene on intact and enzyme-digested plasmid DNA fragments. Except for cryIA(a) gene on the high molecular weight plasmid of 165-kb, all of four genes were located on the plasmid of 66-kb. The production of $\beta$-exotoxin from B. thuringiensis NT0423 was identified by the HPLC analysis. In addition, the $\beta$-exotoxin showed its ability to prevent pupation of treated larvae of house flies (Musca domestica) from developing into normal adults.

  • PDF

Crystal Structure of SAV0927 and Its Functional Implications

  • Jeong, Soyeon;Kim, Hyo Jung;Ha, Nam-Chul;Kwon, Ae-Ran
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.500-505
    • /
    • 2019
  • Staphylococcus aureus is a round-shaped, gram-positive bacterium that can cause numerous infectious diseases ranging from mild infections such as skin infections and food poisoning to life-threatening infections such as sepsis, endocarditis and toxic shock syndrome. Various antibiotic-resistant strains of S. aureus have frequently emerged, threatening human lives significantly. Despite much research on the genetics of S. aureus, many of its genes remain unknown functionally and structurally. To counteract its toxins and to prevent the antibiotic resistance of S. aureus, our understanding of S. aureus should be increased at the proteomic scale. SAV0927 was first sequenced in an antibiotic resistant S. aureus strain. The gene is a conserved hypothetical protein, and its homologues appear to be restricted to Firmicutes. In this study, we determined the crystal structure of SAV0927 at $2.5{\AA}$ resolution. The protein was primarily dimeric both in solution and in the crystals. The asymmetric unit contained five dimers that are stacked linearly with ${\sim}80^{\circ}$ rotation by each dimer, and these interactions further continued in the crystal packing, resulting in a long linear polymer. The crystal structures, together with the network analysis, provide functional implications for the SAV0927-mediated protein network.

Expression of Fusion Products of Insecticidal Crystal Protein Genes from Two Different Bacillus thuringiensis Strains (두종의 Bacillus thuringiensis 내독소단백질 유전자의 융합에 의한 발현)

  • 제연호;김상현
    • Journal of Sericultural and Entomological Science
    • /
    • v.35 no.1
    • /
    • pp.36-42
    • /
    • 1993
  • Expression of insecticidal protein by fusion product of truncated HD-1[CryIA(a)] N-terminal and HD-73[CryIA(c)] C-Terminal fragment of Bacillus thruingiensis subsp. kurstaki was investigate. Immunological analysis of transformants by using polyclonal antisera raised against the whole-crystal protein of HD-1 revealed that SK4 and SK5 were observed cross-reaction with polypeptides of 77-kDa and 105-kDa, respectively. Bioassay of the transformant pSK5 to Plutella maculipennis and Heliothis assulta were 96% and 97%, respectively.

  • PDF

Expression of Bacillus thringiensis HD-1 gene in rhizobacteria Pseudomonas fluorescens KR164 (근권 길항세균 Pseudomonas fluorescens KR164에 Bacillus thuringiensis HD-1 유전자의 삽입과 발현)

  • Kim, Yeong-Yil;Rhee, Young-Hwan;Kang, Heun-Soo
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.227-231
    • /
    • 1992
  • The plasmids pSUPBT and pSUPBTR were constructed with a vector pSUP2021 and the BT toxin gene in the plasmid pES 1. The plasmids constructed were introduced into the antagonistic rhizobacteria P. fluorescens KR164 by conjugation and P. fluorescens having pSUPBT and pSUPBTR were named P. fluorescens KR164(pSUPBT)#2, KR164(pSUPBT)#3, KR164(pSUPBTR)#2 and KR164(pSUPBTR)#3, respectively. The BT toxin gene were identified in all transformants by Southern hybridization and the final product of BT toxin gene was identified only in P. fluorescens KR164(pSUPBTR)#3 by SDS-PAGE. This crystal toxin protein were also observed in electron microscopy.

  • PDF