• Title/Summary/Keyword: Crystal grain

Search Result 560, Processing Time 0.024 seconds

EFFECT OF ANNEALING ON THE OPTICAL PROPERTY OF RF-SPUTTERED CdTe THIN FILM

  • Lee, Dong-Young;Lee, Soon-Il;Oh, Soo-Ghee
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.666-672
    • /
    • 1996
  • The optical property of CdTe thin film is important for applications such as the compound semiconductor type solar cells. CdTe films are prepared by RF sputtering at various substrate temperature between $25^{\circ}C$ and $300^{\circ}C$, then, annealed in argon gas environment at $400^{\circ}C$. The annealing process of the thin film caused variation in the film structure and the composition of films. The deformation of CdTe thin film was observed by X-ray diffractometry. After annealing, the grain size increased and the portion of the non-crystalline CdTe reduced. Futhermore, the structure of sputtered CdTe film grown at the substrate temperature more than $250^{\circ}C$ was enhanced in the (111) direction of zincblend structure. There was a discrepancy, in the spectroscopic ellipsometer spectrum, between the single crystal CdTe and the sputtered CdTe thin films, especially in the region over 3.2eV. An oxidation layer was found on the CdTe thin film by spectroscopic ellipsometry analysis.

  • PDF

MnO2 as an Effective Sintering Aid for Enhancing Piezoelectric Properties of (K,Na)NbO3 Ceramics

  • Jeong, Seong-Kyu;Hong, In-Ki;Do, Nam-Binh;Tran, Vu Diem Ngoc;Cho, Seong-Youl;Taib, Weon Pil;Lee, Jae-Shin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.399-403
    • /
    • 2010
  • The effects of $MnO_2$ doping on the crystal structure, ferroelectric, and piezoelectric properties of (K,Na)$NbO_3$ (KNN) ceramics have been investigated. $MnO_2$ was found to be effective in enhancing the densification and grain growth during sintering. X-ray diffraction analysis indicated that Mn ions substituted B-site Nb ions up to 2 mol%, however, further doping induced unwanted secondary phases. In comparison with undoped KNN ceramics, the well developed microstructure and the substitution to B-sites in 2 mol% Mn-doped KNN ceramics resulted in significant improvements in both piezoelectric coupling coefficient and electromechanical quality factor.

Synthesis and Characterization of Middle Infrared Transmission ZnS Ceramics by Heat Treatment Time (열처리 시간에 따른 중적외선 투과 ZnS 세라믹의 합성과 특성)

  • Kwon, Tae-Hyeong;Yeo, Seo-Yeong;Park, Chang-Sun;Kim, Chang-Il;Hong, Youn-Woo;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.360-365
    • /
    • 2017
  • In this study, a heat treatment process was applied to ZnS nano-powder to improve the optical properties of ZnS ceramic, and the characteristics of heat treatment time were studied. The ZnS nano-powders were synthesized by hydrothermal synthesis. The heat treatment was carried out at $550^{\circ}C$ for 0.5, 1, 2, and 4 hours in a vacuum atmosphere ($10^{-2}torr$). X-ray diffraction and scanning electron microscope analyzes confirmed the change of crystal phase and grain size to confirm the structural change with heat treatment time. The heat treated ZnS nano-powder was sintered by hot pressing, and the change of optical properties of the ZnS ceramic was analyzed by infrared spectroscopy.

A Study on the Compound Semiconductor $ZnS/_{(P)}Si$ Solar Cell (화합물 반도체 $ZnS/_{(P)}Si$ 태양전지에 관한 연구)

  • Song, In-Duk;Jhoun, Choon-Saing;Lim, Eung-Choon
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.183-186
    • /
    • 1990
  • The lattice mismatch between ZnS and Si is negligible because of its value being 0.39%. In this study, $ZnS/_{(P)}Si$ solar cell were fabricated as a layer of ZnS is epitaxially grown on a silicon substrate by PVD method and its photovoltaic properties were measured and discussed. The heat treatment was done after deposition. As the temperature increased up to a certain value, the film has better perfection in crystal structure and electrical characteristics. Measurments of the change that occur in the ZnS films were made by SEM., X-ray diffraction. The optimal thickness of film showned $0.6{\mu}m$, being measured by SEM. The great improvement of the grain growth ZnS film came out after heat-treatment. The result obtained from the $ZnS/_{(P)}Si$ solar cell as follows:short circuit current; $I_{sc}=54mA/cm^2$,open voltage; $V_{oc}=400mV$, fill factor FF=0.72, conversion efficiency; ${\eta}=15.6%$ under the irradiation of 100 ($mW/cm^2$) focused by solar energy. And these are discussed in comparison with other kinds.

  • PDF

The dynamic fracture toughness of aluminum alloy weld zone by instrumented charpy test (計裝化 샬피 시험법 에 의한 알루미늄 합금 용접부 의 동적파괴 인성)

  • 문경철;강락원;이준희
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.42-51
    • /
    • 1985
  • The dynamic fracture toughness, fracture characteristics, impact tension and tensile properties of Al-Mg-Si T5 alloy and Al-Zn-Mg T6 alloy respectively welded with filler metal of Alcan 4043 were investigated. The dynamic fracture toughness values were obtained rapidly and simply for the specimen of small size by using instrumented Chirpy impact testing machine. the testing temperatures of the specimen were a range of room temperature and-196.deg. C. The results obtained in this experiment are summarized as follows. With decreasing the testing temperatures, dynamic tensile stress and fracture load were increased, on the other hand the deflection and impact value showed decreasing tendency in order of base metal>HAZ>weld. Changes of total absorbed energy were more influenced by the crack propagation energy than the crack initiation energy. At the low temperatures, the unstable rapid fracture representing the crack propagation appeared for the specimens of Charpy press side notched in Al-Zn-Mg alloy, but it was difficult to obtain the unstable rapid fracture in Al-Mg-Si alloy. Because of the development of plastic zone at the notch root, it was difficult to obtain thevalid $K_{1d}$ value in Al-Mg-Si alloy. Therefore the fatigue cracked specimens were effective in both Al-Mg-Si and Al-Zn-Mg alloys. With decreasing the impact testing temperatures, specimens underwent a transition from dimple-type transgranular fracture to lamella surface-type intergranular fracture because of the precipitate at the grain boundaries, impurities and crystal structure of the precipitates.s.

  • PDF

Piezoelectric Properties in ZnO Dopped (Na,K)NbO3 Ceramics (ZnO가 첨가된 (Na,K)NbO3계 세라믹스의 압전 특성)

  • Ryu Sung-Lim;Kweon Soon-Yong;Ur Soon-Chul;Kim Si-Chul;Yoo Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.707-711
    • /
    • 2006
  • ZnO was doped up to 0.3 wt% for improving the electrical properties of lead-free $[Li_{0.04}(Na_{0.44}Ko_{0.52})-(Nb_{0.86}\;Ta_{0.10}\;Sb_{0.04})]O_3$ piezoelectric ceramics. The ceramics were fabricated with the conventional sintering processes. Crystal structure of the samples was tetragonal phase regardless of ZnO amount. However, the piezoelectric properties were varied with the ZnO amount. The electro-mechanical coupling factor $(k_p)$ was with the ZnO amount up to 0.2 wt% but decreased with the further addition. the maximum value of $k_p$ was 0.475. Density, piezoelectric charge constant and relative dielectric constant was also showed maximum value at 0.2 wt%. The maximum values are $4.75g/cm^3$, 275 pC/N, 1403, respectively. In contrast, the mechanical quality factor $(Q_m)$ was not varied with increasing the ZnO addition up to 0.2 wt% but rapidly increased at 0.3 wt%.

Structural Analyses and Properties of $Ti_{1-x}Al_xN$ Films Deposited by PACVD Using a $TiCl_4/AlCl_3/N_2/Ar/H_2$ Gas Mixture ($TiCl_4/AlCl_3/N_2/Ar/H_2$ 반응계를 사용하는 플라즈마화학증착법에 의한 $Ti_{1-x}Al_xN$ 박막의 구조분석 및 물성)

  • 김광호;이성호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.809-816
    • /
    • 1995
  • Ti1-xAlxN films were successfully deposited on high speed steel and silicon wafer by plasma-assisted chemical vapor deposition using a TiCl4/AlCl3/N2/Ar/H2 gas mixture. Plasma process enabled N2 gas to nitride AlCl3, which is not possible in sense of thermodynamics. XPS analyses revealed that the deposited layer contained Al-N bond as well as Ti-N bond. Ti1-xAlxN films were polycrystalline and had single phase, B1-NaCl structure of TiN. Interplanar distance, d200, of (200) crystal plane of Ti1-xAlxN was, however, decreased with Al content, x. Al incorporation into TiN caused the grain size to be finer and changed strong (200) preferred orientation of TiN to random oriented microstructure. Those microstructural changes with Al addition resulted in the increase of micro-hardness of Ti1-xAlxN film up to 2800Kg/$\textrm{mm}^2$ compared with 1400Kg/$\textrm{mm}^2$ of TiN.

  • PDF

Crystal Growth and Characterization of Metallurgical-grade Polycrystalline Silicon by the Bridgman Method (Bridgman법에 의한 금속급 다결정 Si의 결정성장 및 특성평가에 관한 연구)

  • Lee, Chang-Won;Kim, Kye-Soo;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.1
    • /
    • pp.28-34
    • /
    • 1994
  • Metallurgical-grade polycrystalline silicon was directionally solidified at growth rates of $0.2{\sim}1.0mm/min$ by using split type, reusable graphite molds which were coated with $Si_3N_4$ powder. The resultant grain sizes of the silicon ingots and the shapes of the solid/liquid(S/L) interfaces were investigated. X-ray diffraction was used to determine the preferred orientation in each of the silicon ingots. The impurity content of the silicon was analyzed and the resistivities of the ingots were measured. During the growth of an ingot, the shape of the S/L interface was concave to the silicon melt, and the resistivity decreased. The presence of Al which can be acting as a carrier, is thought to be the main factor causing such a decrease in resistivity. When a growth rate of 0.2㎜/min was used, the preferred orientation was found to be (111).

  • PDF

The Structure and Electrochromic Characteristics of $WO_3$ thin Film with deposition Conditions and Post-Annealing (증착조건 및 후-열처리에 따른 $WO_3$박막의 구조와 전기착색 특성)

  • 조형호;임원택;안일신;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.141-147
    • /
    • 1999
  • The electrochromic characteristics of tungsten oxide films are largely affected by deposition conditions, such as substrate temperature and gas flow rate and also post-annealing. We have considered gas flow rate and temperature as important factors having an effect on an electrical, optical phenomenon and structural variation of $WO_3$ . The tungsten oxide films were deposited onto ITO(20$\Omega\box$, 1000$\AA$) using rf magnetron sputtering method. In particular, the films deposited at room temperature were annealed at various temperatures in air. All specimens had crystal structure except one being deposited at room temperature with nearly amorphous-like structure. The specimen deposited at $100^{\circ}C$ had a structure in which the increase in deposition temperature. The specimen deposited at $100^{\circ}C$ had a structure in which the cations$(Li^+)$ are easily movable because of void boundaries induced by regularly arrayed large grains. The specimen deposited at $300^{\circ}C$ had a dense structure with small grains but it exhibited the large mobility and charge density in $WO_3$ because of distinct grain boundaries.

  • PDF

Field Emission Characteristics of Deffctive Diamond Films

  • Koh, Ken-Ha;Park, Kyung-Ho;Lee, Soon-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.160-166
    • /
    • 1998
  • The field emission characteristics of defective diamond films grown by microwave plasma enhanced chemical vapor deposition (MPECVD) have been studied. X-ray diffraction, the poor crystal quality and/or small grain sizes of the diamond phase and the inclusion of the non-diamond carbon phases in these films have been condirmed by raman spectroscopy, scanning electron microscopy, atomic force microscopy, and the reflectance measurements. The degrees of the film defectiveness and the emission characteristics were dependent on the methane concentration. Current-versus-voltage measurements have demonstrated that the defective diamond films have good electron emission characteristics. characteristics strongly suggests the defect-related electron-emission mechanism. The defective diamond films deposited on Si substrates show the field emission current density of 1$\mu\textrm{A}/\textrm{cm}^2$ and 1mA/$\textrm{cm}^2$ have been measured at electric fields as low as 4.5V/$\mu\textrm{m}$ and 7.6V/$\mu\textrm{m}$, respectively. We also observed the similar emission characteristics from the defective diamond film deposited on Cr/Si substrate and could decrease the deposition temperature to $600^{\circ}C$.

  • PDF