• Title/Summary/Keyword: Crystal field

Search Result 1,132, Processing Time 0.027 seconds

A Study on the Liquid Encapsulant Czochralski(LEC) Crystal Growth with Magnetic Fields (자기장하에서 액막 초크랄스키 방법에 의한 단결정 성장에 관한 연구)

  • Kim, Mu-Geun;Seo, Jeong-Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1667-1675
    • /
    • 2001
  • Numerical simulations are carried out for the liquid encapsulant Czochralski(LEC) by imposing a magnetic field. The use of a magnetic field to the crystal growth is to suppress melt convection and to improve the homogeneity of the crystal. In the present numerical investigation, we focus on the range of 0-0.3Tesla strength for the axial and cusped magnetic field and the effect of the magnetic field on the melt-crystal interface, flow field and temperature distribution which are the major factors to determine the quality of the single crystal are of particular interest. For both axial and cusped magnetic field, increase of the magnetic field strength causes a more convex interface to the crystal. In general, the flow is weakened by the application of magnetic field so that the shape of the melt-crystal interface and the transport phenomena are affected by the change of the flow and temperature field.

Crystal growth from melt in combined heater-magnet modules

  • Rudolph, P.;Czupalla, M.;Dropka, N.;Frank-Rotsch, Ch.;KieBling, F.M.;Klein, O.;Lux, B.;Miller, W.;Rehse, U.;Root, O.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.215-222
    • /
    • 2009
  • Many concepts of external magnetic field applications in crystal growth processes have been developed to control melt convection, impurity content and growing interface shape. Especially, travelling magnetic fields (TMF) are of certain advantages. However, strong shielding effects appear when the TMF coils are placed outside the growth vessel. To achieve a solution of industrial relevance within the framework of the $KRISTMAG^{(R)}$ project inner heater-magnet modules(HMM) for simultaneous generation of temperature and magnetic field have been developed. At the same time, as the temperature is controlled as usual, e.g. by DC, the characteristics of the magnetic field can be adjusted via frequency, phase shift of the alternating current (AC) and by changing the amplitude via the AC/DC ratio. Global modelling and dummy measurements were used to optimize and validate the HMM configuration and process parameters. GaAs and Ge single crystals with improved parameters were grown in HMM-equipped industrial liquid encapsulated Czochralski (LEC) puller and commercial vertical gradient freeze (VGF) furnace, respectively. The vapour pressure controlled Czochralski (VCz) variant without boric oxide encapsulation was used to study the movement of floating particles by the TMF-driven vortices.

Magnetic field effects of silicon melt motion in Czochralski crystal puller (초크랄스키 단결정 장치내 실리콘 용융액 운동의 자기장효과)

  • Lee, Jae-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.129-134
    • /
    • 2005
  • A numerical analysis was performed on magnetic field effects of silicon melt motion in Czochralski crystal puller. The turbulent modeling was used to simulate the transport phenomena in 18' single crystal growing process. For small crucible angular velocity, the natural convection is dominant. As the crucible angular velocity is increased, the forced convection is increased and the distribution of temperature profiles is broadened. The cusp magnetic field reduces effectively the natural and forced convection near the crucible and the temperature profiles of the silicon fluids is similar in the case of conduction.

Silicon melt motion in a Czochralski crystal puller (쵸크랄스키 단결정 장치에서의 실리콘유동)

  • 이재희;이원식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The heat in Czochralski method is transfered by all transport mechanisms such as convection, conduction and radiation and convection is caused by the temperature difference in the molden pool, the rotations of crystal or crucible and the difference of surface tension. This study delvelops the simulation model of Czochralski growth by using the finite difference method with fixed grids combined with new latent heat treatment model. The radiative heat transfer occured in the surfce of the system is treated by calculating the view factors among surface elements. The model shows that the flow is turbulent, therefore, turbulent modeling must be used to simulate the transport phenomena in the real system applied to 8" Si single crystal growth process. The effects of a cusp magnetic field imposed on the Czochralski silicon melt are studied by numerical analysis. The cusp magnetic field reduces the natural and forced convection due to the rotation of crystal and crucible very effectively. It is shown that the oxygen concentration distribution on the melt/crystal interface is sensitively controlled by the change of the magnetic field intensity. This provides an interesting way to tune the desired O concentration in the crystal during the crystal growing.

  • PDF

Surface Driven Switching in Liquid Crystal Displays

  • Komitov, Lachezar
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.14-16
    • /
    • 2009
  • Surface driven switching of the liquid crystal bulk arising from the coupling between an applied electric field and a polarized state of a nematic liquid crystal, both localized at the substrate surface, is reported. Fast switching is demonstrated in a hybrid aligned nematic cell with a fringe electric field generated by comb-like electrode structure.

  • PDF

A numerical study on the effects of the asymmetric cusp magnetic field in 8 inch silicon single crystal growth by Czochralski method (초크랄스키법에 의한 8인치 실리콘 단결정 성장시 비대칭 커스프자장의 영향에 관한 연구)

  • 이승철;정형태;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • A numerical study was conducted on the effects of the cusp magnetic field in 8" silicon single crystal grwoth by Czochralski method. For a damping effects simulation by magnetic field, low reynolds number ${\kappa} - {\varepsilon}$ model was adopted. Symmetrci cusp magnetic field has a effect of damping streamline crystal, is lowerd with the increasing cusp magnetic field intensity. The uniformity of the oxygen concentration was improved. The asymmetirc cusp magnetic field increased the oxygen concentration however, oxygen concentration distribution in the radial direction was remained uniform. Suitable combination of symmetric and asymmetric cusp magnetic fields could give uniform and low oxygen concentration in the axial direction.tion.

  • PDF

Theoretical Calculation of Zero Field Splitting of $Mn^{2+}$ Ion in $LiTaO_3$Crystal

  • Yeom, T.H;Lee, S.H
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.77-79
    • /
    • 2001
  • The semi-empirical superposition model has been applied to calculate the zero field splitting parameters of $Mn^{2+}$ion in $LiTaO_3$ single crystal, assuming that $Mn^{2+}$ion occupies one of two possible sites: $Li^{l+} \;or\; Ta^{5+}$ site, respectively. The 2nd-order axial zero field splitting parameters are $958\times10^{-4}cm^{-1}\; at\; Li^{1+}$ site and $193\times 10^{-4}cm^{-1} \;at\; Ta^{5+}$ site for $Mn^{2+}$ions. The 4th-order zero field splitting parameters at $Li^{l+} \;and\; Ta^{5+}$ sites are also determined. These calculated zero field splitting parameters are very important to determine the substitutional sites of doped impurity ions in $LiTaO_3$ crystal.

  • PDF

A numerical study on the optimum operation condition for axial oxygen concentration in 8 inch silicon growth by cusp MCZ (8인치 실리콘성장을 위한 커스프 MCZ계에서 축방향 산소분포에 대한 연구)

  • 이승철;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.406-417
    • /
    • 1997
  • A numerical study was conducted on the optimum magnetic field intensity and asymmetric factor for uniform axial oxygen concentration in 8 inch silicon single crystal growing process by magnetic Czochralski method. For constant shape of cusp field, a change of coil and crucible position were compared. In case of symmetric cusp field, magnetic field intensity variation shows concave downward with crystal growing for uniform, axial oxygen concentration. A numerical results show similar value of standard deviation of average oxygen concentration for uniform oxygen concentration between coil and crucible position change. In case of asymmetric cusp field. asymmetric factor is increased with crystal growing to have uniform oxygen concentration.

  • PDF

Calculation of the Cubic Crystal Field Splitting 10 Dq in KNiF$_3$. An Integral Hellmann-Feynman Approach (Integral Hellmann-Feynman Approach에 의한 KNiF$_3$의 Cubic Crystal Field Splitting 10 Dq의 계산)

  • Hojing Kim;Hie-Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.6
    • /
    • pp.395-405
    • /
    • 1973
  • By use of an Integral Hellmann-Feynman formula, the cubic crystal field splitting 1O Dq in $KNiF_3$ is calculated from first principles. Numerical values of covalency parameters and necessary integrals are quoted from Sugano and Shulman. The result, 7100$cm^{-1}$, is in excellent agreement with the observed value, 7250$cm^{-1}$. It is found that higher order perturbation energy correction is of the same order of magnitude as 10 Dq itself and is, therefore, essential tin calculating 10 Dq from first principles. It is also found that the point charge potential is the dominant part of the crystal field potential.

  • PDF

Field emission characteristics of carbon nanfiber bundles

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.211-214
    • /
    • 2004
  • Carbon nanofiber bundles were formed on silicon substrate using microwave plasma-enhanced chemical vapor deposition system. These bundles were vertically well-grown under the high negative bias voltage condition. The bundles were composed of the individual carbon nanofiber having less than 100 nm diameters. Turn-on voltage of the field emission was measured around 0.8 V/$\mu\textrm{m}$. Fowler-Nordheim plot of the measured values confirmed the field emission characteristic of the measured current.