• 제목/요약/키워드: Crystal Size

Search Result 1,508, Processing Time 0.026 seconds

A Study on Characteristics of Leachability and Compressive Strength of Incinerator Fly Ash, Cement and Waste Stone Powder by Solidification (산업폐기물 소각장 비산재의 시멘트 및 폐석분 고형화시 압축강도 및 용출특성)

  • Jung, Ho-Young;Kim, Young-Ju;Kim, Ji-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.560-566
    • /
    • 2008
  • In this paper, the solidification behaviour and compressive strength of fly ash, cement, and waste stone powder were studied each separately and with addition of each in different proportions. And also, we assessed stabilizing ability of waste stone powder in cement which was added in fly ash. The particle size of waste stone powder was found smaller than the fly ash and cement particle sizes. Moreover, when mixing all(fly ash, cement, and waste stone powder) showed distinctive crystal structure, and improved stiffness. In case of mixing fly ash, cement and waste stone powder in different proportions, the compressive strength was exceeded to the predicted compressive strength of 10 kgf/cm$^2$. The XRD analysis showed high contents of CaO in fly ash and SiO$_2$ in case of waste stone powder sample. Heavy metal emission experiment showed the 3mg/L of Pb after 14 days of mixing 150 kg/m$^3$ of cement with the 80$\sim$100 kg/m$^3$ of waste stone powder, which is fulfilling the National Waste Management Policy.

Diagnosis of Coloration Status and Scientific Analysis for Pigments to Used Large Buddhist Painting(Gwaebultaeng) in Tongdosa Temple (통도사 괘불탱의 채색상태 및 사용 안료의 과학적 분석)

  • Lee, Jang Jon;Ahn, Ji Yoon;Yoo, Young Mi;Lee, Kyeong Min;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.431-442
    • /
    • 2017
  • The purpose of this study is to reveal that coloring status and the degree of damage and the kinds of pigments used in large buddhist painting (Gwaebultaeng) of Tongdosa temple using a scientific analysis methods. It was observed that the physical damage patterns of the Gwaebultaeng were folding, lifting, fading, and peeling. Lead red, cinnabar and organic pigments were used as red pigments. Malachite and atacamite were used as green pigments, azulite and lazulite were blue pigments, lead white and talc were white pigment. It is estimated that overlapping organic pigments on the lead white were used as the yellow pigment and carbon was the black pigment. Through the analysis of the particle status of the pigments, it was confirmed that different types of raw materials were used for the green pigment, and the crystal form was easily distinguishable. Also, the dark blue color and the light blue color differed from each other depending on the size and shape of the raw material particles. Yellow and purple colors were organic pigments which did not have a graininess. The yellow and purple colors were organic pigments free from the graininess, and the pigments of dark red pigments was found to be mixed with the orange color pigments and carbon particles.

High Throughput Screening and Directed Evolution of Tyrosine Phenol-Lyase (Tyrosine Phenol-Lyase의 고속탐색기술 개발 및 방향성 분자진화)

  • Choi Su-Lim;Rha Eu-Gene;Kim Do-Young;Song Jae-Jun;Hong Seung-Pyo;Sung Moon-Hee;Lee Seung-Goo
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.58-62
    • /
    • 2006
  • Rapid assay of enzyme is a primary requirement for successful application of directed evolution technology. Halo generation on a turbid plate would be a method of choice for high throughput screening of enzymes in this context. Here we report a new approach to prepare turbid plates, by controlling the crystallization of tyrosine to form needle-like particles. In the presence of tyrosine phenol-lyase (TPL), the needle-like tyrosine crystals were converted to soluble phenol rapidly than the usual rectangular tyrosine crystals. When an error-prone PCR library of Citrobacter freundii TPL was spread on the turbid plate, approximately 10% of the colonies displayed recognizable halos after 24 hours of incubation at $37^{\circ}C$. Representative positives from the turbid plates were transferred to LB-medium in 96-wellplates, cultivated overnight, and assayed for the enzyme activity with L-tyrosine as the substrate. The assay results were approximated to be proportional to the halo size on turbid plates, suggesting the screening system is directly applicable to the directed evolution of TPL. Actually, two best mutants on the turbid plates were identified to be $2{\sim}2.5$ and 1.5-fold improved in the activity.

A New Strategy to Fabricate a Colloidal Array Templated $TiO_2$ Photoelectrode for Dye-sensitized Solar Cells

  • Lee, Hyeon-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.1-8.1
    • /
    • 2011
  • Nanocrystalline titanium dioxide ($TiO_2$) materials have been widely used as an electron collector in DSSC. This is required to have an extremely high porosity and surface area such that the dye can be sufficiently adsorbed and be electronically interconnected, resulting in the generation of a high photocurrent within cells. In particular, their geometrical structures and crystalline phase have been extensively investigated as important issues in improving its photovoltaic efficiency. In this study, we present a new strategy to fabricate a photoelectrode having a periodic structured $TiO_2$ film templated from 1D or 3D polystyrene (PS) microspheres array. Monodisperse PS spheres of various radiuses were used for colloidal array on FTO glasses and two types of photoelectrode structures with different $TiO_2$ materials were investigated respectively. One is the igloo-shaped electrode prepared by $TiO_2$ deposition by RF-sputtering onto 2D microsphere-templated substrates. At the interface between the film and substrate, there are voids formed by the decomposition of PS microspheres during the calcination step. These holes might be expected to play the predominant roles as scattering spherical voids to promote a light harvesting effect, a spacious structure for electrolytes with higher viscosity and effective paths for electron transfer. Additionally the nanocrystalline $TiO_2$ phase prepared by the RF-sputtering method was previously reported to improve the electron drift mobility within $TiO_2$ electrodes. This yields solar cells with a cell efficiency of 2.45% or more at AM 1.5 illumination, which is a very remarkable result, considering its $TiO_2$ electrode thickness (<2 ${\mu}m$). This study can be expanded to obtain higher cell efficiency by higher dye loading through the increase of surface area or multi-layered stacking. The other is the inverse opal photonic crystal electrode prepared by titania particles infusion within 3D colloidal arrays. To obtain the enlargement of ordered area and high quality of crystallinity, the synthesis of titania particles coated with a organic thin layer were applied instead of sol-gel process using the $TiO_2$ precursors. They were dispersed so well in most solvents without aggregates and infused successfully within colloidal array structures. This ordered mesoporous structure provides the large surface area leading to the enough adsorption of dye molecules and have an light harvesting effect due to the photonic band gap properties (back-and-forth reflection effects within structures). A major advantage of this colloidal array template method is that the pore size and its distribution within $TiO_2$ photoelectrodes are determined by those of latex beads, which can be controlled easily. These materials may have promising potentials for future applications of membrane, sensor and so on as well as solar cells.

  • PDF

Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction (광화학적 반응을 이용한 편극 패턴된 강유전체 표면에 금속 나노입자의 증착에 관한 연구)

  • Park, Young-Sik;Kim, Jung-Hoon;Yang, Woo-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.300-306
    • /
    • 2011
  • We report the surface distribution of metal (Ag, Au) nanoparticles grown on polarity-patterned ferroelectric substrates by photochemical reaction. Single crystal periodically polarity-patterned $LiNbO_3$(PPLN) was used as a ferroelectric substrate. The nanoparticles were grown by ultra-violet (UV) light exposure of the PPLN in the aqueous solutions including metas. The surface distribution of the grown nanoparticles were measured by atomic force microscopy and identification of the orientation of the polarity of the ferroelectric surface was performed by piezoelectric force microscopy. The Ag- and Au-nanoparticles grown on +z polarity regions are larger and denser than that on -z polarity regions. In particlur, the largest and denser Ag-nanoparticles were grwon on the polarity boundary regions of the PPLN while Au-nanoparticles were not specifically grown on the boundary regions. Thus, we found that the size and position of metal nanoparticles grown on ferroelectric surfaces can be controlled by UV-exposure time and polarity pattern structures. Also, we discuss the difference of the surface distribution of the metal nano-particles depending on the polarity of the ferroelectric surfaces in terms of surface band structures, reduced work fucntion, and inhomogeneous electric field distribution.

Possibility about Application and Interpretation of Surface Nondestructive X-ray Diffraction Method for Cultural Heritage Samples by Material (유형별 문화재 시료의 비파괴 표면 X-선 회절분석법 적용과 해석 가능성)

  • Moon, Dong Hyeok;Lee, Myeong Seong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.287-301
    • /
    • 2019
  • Preservation of the original form is the principle for conservation, management and utilization of cultural heritages. Thus, non-destructive analysis of these samples are important field of the conservation science. In this study, examined the applicability of nondestructive surface X-ray diffraction analysis (ND-XRD) for cultural heritage by materials (rock specimen, jade stone, pigment painted specimen, earthen artifact, metal artifact). In result, all type of sample is recorded suitable X-ray diffraction patterns for identifying mineral composition in case of surface condition with adequate particle size and arrangement. And diffraction pattern is reflected surface information than matrix. Therefore, ND-XRD is thought to be applicable not only mineral identification but also interpretation of manufacturing technique and alteration trend about layered sample (in horizontally or vertically). Whereas some exceptional diffraction patterns were recorded due to overlapping information on specific crystal planes. It caused by skip the sample treatment (powdering and randomly orientation). It could be advantageously used for mineral identification, such as preferred orientation of clay minerals. In contrast, irregular diffraction pattern caused by single crystalline effect is required careful evaluation.

Microwave Dielectric Properties in Bi-Substituted BaO.$Nd_{2}O_{3}$.$4TiO_{2}$ (Bi 가 치환된 BaO.$Nd_{2}O_{3}$.$4TiO_{2}$ 세라믹스의 마이트로파 유전특성)

  • Cheon, Jae-Il;Kim, Jeong-SeoG
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.659-663
    • /
    • 1998
  • The effect of Bi-substitution in $BaO.(Nd_{1-x}Bi_x)_2O_3.4TiO_2$ ceramic was studied on the formation of crystal phases, microstructure, and microwave dielectric properties. $BaO.(Nd_{1-x}Bi_x)_2O_3.4TiO_2$, solid solution (0$\leq$x$\leq$0.2) were formed by Bi-substitution into the Nd site of $BaO.(Nd_{1-x}Bi_x)_2O_3.4TiO_2$ ceramics. Average grain size increased with Bi-substitution. Dielectric constant(${\varepsilon}_r$) increased from 84 to U8, and the temperature coefficient of resonant frequency(${\tau}_f$) decreased from 44 ppm/$^{\circ}C$ to -30 ppm/$^{\circ}C$ when Bi contents increased up to x=0.2 in $BaO.(Nd_{1-x}Bi_x)_2O_3.4TiO_2$ solid solutions. $BaO.(Nd_{1-x}Bi_x)_2O_3.4TiO_2$ solid solutions with x=0.04~0.08 showed the most superior microwave dielectric properties, those are ${\varepsilon}_r$= 89-92, Q . f = 5855~6091 GHz, and (${\tau}_f$)= -7.5-7.5 ppm/$^{\circ}C$.

  • PDF

Laser crystallization in active-matrix display backplane manufacturing

  • Turk, Brandon A.;Herbst, Ludolf;Simon, Frank;Fechner, Burkhard;Paetzel, Rainer
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1261-1262
    • /
    • 2008
  • Laser-based crystallization techniques are ideally-suited for forming high-quality crystalline Si films on active-matrix display backplanes, because the highly-localized energy deposition allows for transformation of the as-deposited a-Si without damaging high-temperature-intolerant glass and plastic substrates. However, certain significant and non-trivial attributes must be satisfied for a particular method and implementation to be considered manufacturing-worthy. The crystallization process step must yield a Si microstructure that permits fabrication of thin-film transistors with sufficient uniformity and performance for the intended application and, the realization and implementation of the method must meet specific requirements of viability, robustness and economy in order to be accepted in mass production environments. In recent years, Low Temperature Polycrystalline Silicon (LTPS) has demonstrated its advantages through successful implementation in the application spaces that include highly-integrated active-matrix liquid-crystal displays (AMLCDs), cost competitive AMLCDs, and most recently, active-matrix organic light-emitting diode displays (AMOLEDs). In the mobile display market segment, LTPS continues to gain market share, as consumers demand mobile devices with higher display performance, longer battery life and reduced form factor. LTPS-based mobile displays have clearly demonstrated significant advantages in this regard. While the benefits of LTPS for mobile phones are well recognized, other mobile electronic applications such as portable multimedia players, tablet computers, ultra-mobile personal computers and notebook computers also stand to benefit from the performance and potential cost advantages offered by LTPS. Recently, significant efforts have been made to enable robust and cost-effective LTPS backplane manufacturing for AMOLED displays. The majority of the technical focus has been placed on ensuring the formation of extremely uniform poly-Si films. Although current commercially available AMOLED displays are aimed primarily at mobile applications, it is expected that continued development of the technology will soon lead to larger display sizes. Since LTPS backplanes are essentially required for AMOLED displays, LTPS manufacturing technology must be ready to scale the high degree of uniformity beyond the small and medium displays sizes. It is imperative for the manufacturers of LTPS crystallization equipment to ensure that the widespread adoption of the technology is not hindered by limitations of performance, uniformity or display size. In our presentation, we plan to present the state of the art in light sources and beam delivery systems used in high-volume manufacturing laser crystallization equipment. We will show that excimer-laser-based crystallization technologies are currently meeting the stringent requirements of AMOLED display fabrication, and are well positioned to meet the future demands for manufacturing these displays as well.

  • PDF

A Study on Oxygen Evolution Activity of Co3O4 with different morphology prepared by Ultrasonic Spray Pyrolysis for Water Electrolysis (분무열분해로 합성한 수전해용 Co3O4의 입자형태에 따른 산소발생 활성에 관한 연구)

  • Kim, Ingyeom;Nah, In Wook;Park, Sehkyu
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.854-862
    • /
    • 2016
  • As the demand for a clean energy to replace fossil fuel being depleted increases, hydrogen energy is considered as a promising candidate for future energy source. Water electrolysis which produces hydrogen has high energy efficiency and stability but still has a large overpotential for oxygen evolution reaction (OER). In this study, $Co_3O_4$ catalysts with different morphology were prepared by spray pyrolysis from solutions which contain Co precursor and various organic additives (urea, sucrose, and citric acid), followed by post heat treatment. For the catalysts synthesized, X-ray diffraction (XRD) measurements were performed to identify their crystal structure. Morphology and surface shape of the catalysts were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Surface area and pore volume were examined by nitrogen adsortpion & desorption tests and X-ray photoelectron spectroscopy (XPS) was conducted to confirm nitrogen doping. Linear sweep voltammetry (LSV) was carried out to investigate OER activity of $Co_3O_4$ catalysts. As a result, bare-$Co_3O_4$ which has high surface area and small particle size determined by spray pyrolysis showed high activity toward OER.

Growth and Structural Properties of Fe Thin Films Electrodeposited on n-Si(111) (n-Si(111) 기판 위에 전기증착에 의한 Fe 박막의 성장과 구조적 특성)

  • Kim Hyun-Deok;Park Kyeong-Won;Lee Jong-Duk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1663-1670
    • /
    • 2006
  • Single crystal Fe thin films were grown directly onto n-Si(111) substrates by pulsed electrodeposition. Cyclic Voltammogram(CV) indicated that the $Fe^{2+}/n-Si(111)$ interface shows a good diode behavior by forming a Schottky barrier. From Mott-Schottky (MS) relation, it is found that the flat-band potential of n-Si(111) substrate and equilibrium redox potential of $Fet^{2+}$ ions are -0.526V and -0.316V, respectively. The nucleation and growth kinetics at the initial reaction stages of Fe/n-Si(111) substraste was studied by current transients. Current transients measurements have indicated that the deposition process starts via instantaneous nucleation and 3D diffusion limited growth. After the more deposition, the deposition flux of Fe ions was saturated with increase of deposition time. from the as-deposited sample obtained using the potential pulse of 1.4V and 300Hz, it is found that Fe nuclei grows to three dimensional(3D) islands with the average size of about 100nm in early deposition stages. As the deposition time increases, the sizes of Fe nuclei increases progressively and by a coalescence of the nuclei, a continuous Fe films grow on the Si surface. In this case, the Fe films show a highly oriented columnar structure and x-ray diffraction patterns reveal that the phase ${\alpha}-Fe$ grows on the n-Si(111) substrates.