• Title/Summary/Keyword: Cryptographic Hash Functions

Search Result 22, Processing Time 0.031 seconds

Improving the Efficiency of the EWF-file Imaging Time from a Cryptographic Perspective (암호학적 관점에서의 EWF 파일 이미징 효율성 개선 방안 연구)

  • Shin, Yonghak;Kim, Dowon;Lee, Changhoon;Kim, Jongsung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.4
    • /
    • pp.911-919
    • /
    • 2016
  • Compared to the past, the current disk storages have dramatically increased and extremely many data are transferred on the network everyday. In spite of the anticipation that such development will be continued, there have been lack of studies for improving the data-imaging time in terms of the digital forensics. In this paper, we firstly investigate the time due to hash functions during the data Imaging and secondly propose a method for improving the efficiency of the EWF-File imaging time from a cryptographic perspective.

Optimum Correlation Immune Semi-bent Functions (최적 상관 무결 semi-bent 함수)

  • 지성택;박상우;김대호;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.127-134
    • /
    • 1999
  • Boolean functions have an important role for designing block ciphers and hash functions. In this paper, we propose a method for designing optimum correlation immune functions. We also analyze their cryptographic properties - balancedness, nonlinearity, correlation value to the set of linear functions, correlation immunity, propagation characteristic, and algebraic degree. Such functions are special type of Semi-bent functions [2,5]

Ultra-light Mutual Authentication Scheme based on Text Steganography Communication

  • Lee, Wan Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.11-18
    • /
    • 2019
  • Previous mutual authentication schemes operate on the basis of validated cryptographic functions and hash functions, but these functions require a certain amount of memory capacity. However, since ultra-lightweight IoT devices have a very small amount of memory capacity, these functions can not be applied. In this paper, we first propose a text steganography communication scheme suitable for ultra-lightweight IoT devices with limited resources, and then propose a mutual authentication scheme based on the text steganography communication. The proposed scheme performs mutual authentication and integrity verification using very small amount of memory. For evaluation, we implemented the proposed scheme on Arduino boards and confirmed that the proposed scheme performs well the mutual authentication and the integrity verification functions.

Enhanced Mutual Authentication Scheme based on Chaotic Map for PCM in NFC Service Environment

  • Park, Sung-Wook;Lee, Im-Yeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1180-1200
    • /
    • 2017
  • Currently, automated payment services provide intuitive user interfaces by adapting various wireless communication devices with mobile services. For example, companies like Samsung, Google, and Apple have selected the NFC payment method to service payments of existing credit cards. An electronic payment standard has been released for NFC activation within Korea and will strengthen the safety of payment service communications. However, there are various security risks regarding the NFC-based electronic payment method. In particular, the NFC payment service using the recently released lightweight devices cannot provide the cryptographic strength that is supported by many financial transaction services. This is largely due to its computational complexity and large storage resource requirements. The chaotic map introduced in this study can generate a highly complicated code as it is sensitive to the initial conditions. As the lightweight study using the chaotic map has been actively carried out in recent years, associated authentication techniques of the lightweight environment have been released. If applied with a chaotic map, a high level of cryptographic strength can be achieved that can provide more functions than simple XOR operations or HASH functions. Further, this technique can be used by financial transaction services. This study proposes a mutual authentication technique for NFC-PCM to support an NFC payment service environment based on the chaotic map.

A Study on Image Integrity Verification Based on RSA and Hash Function (RSA와 해시 함수 기반 이미지 무결성 검증에 관한 연구)

  • Woo, Chan-Il;Goo, Eun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.878-883
    • /
    • 2020
  • Cryptographic algorithms are used to prevent the illegal manipulation of data. They are divided into public-key cryptosystems and symmetric-key cryptosystems. Public-key cryptosystems require considerable time for encryption and decryption compared to symmetric-key cryptosystem. On the other hand, key management, and delivery are easier for public-key cryptosystems than symmetric-key cryptosystems because different keys are used for encryption and decryption. Furthermore, hash functions are being used very effectively to verify the integrity of the digital content, as they always generate output with a fixed size using the data of various sizes as input. This paper proposes a method using RSA public-key cryptography and a hash function to determine if a digital image is deformed or not and to detect the manipulated location. In the proposed method, the entire image is divided into several blocks, 64×64 in size. The watermark is then allocated to each block to verify the deformation of the data. When deformation occurs, the manipulated pixel will be divided into smaller 4×4 sub-blocks, and each block will have a watermark to detect the location. The safety of the proposed method depends on the security of the cryptographic algorithm and the hash function.

Construction of UOWHF based on Block Cipher (유니버설 일방향 해쉬 함수에 대한 블록 암호 기반 구성 방법)

  • 이원일
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.1
    • /
    • pp.101-111
    • /
    • 2004
  • Preneel, Govaerts, and Vandewalle considered the 64 basic ways to construct a collision resistant hash function from a block cipher. They regarded 12 of these 64 schemes as secure, though no proofs or formal claims were given. Black, Rogaway, and Shrimpton presented a more proof-centric look at the schemes from PGV. They proved that, in the black box model of block cipher, 12 of 64 compression functions are CRHFs and 20 of 64 extended hash functions are CRHFs. In this paper, we present 64 schemes of block-cipher-based universal one way hash functions using the main idea of PGV and analyze these schemes in the black box model. We will show that 30 of 64 compression function families UOWHF and 42 of 64 extended hash function families are UOWHF. One of the important results is that, in this black box model, we don't need the mask keys for the security of UOWHF in contrast with the results in general security model of UOWHF. Our results also support the assertion that building an efficient and secure UOWHF is easier than building an efficient and secure CRHF.

A Digital Image Watermarking Scheme using ElGamal Function (ElGarnal함수를 사용하는 디지털 이미지 워터마킹 기법)

  • Lee, Jean-Ho;Kim, Tai-Yun
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.1-8
    • /
    • 2002
  • Digital image watermarking is a technique for the purpose of protecting the ownership of the image by embedding proprietary watermarks in a digital image. It is required for the digital image watermarking scheme to pursue the robustness against water marking attacks and the perceptual Invisibility more than usual in steganography area, to guarantee not a hidden watermarking algorithm but the publicity of water-marking algorithm details and hidden use of key, which can protect the unauthorized user access from detection. In this paper we propose a new copyright watermarking scheme, which is barred on one-way hash functions using ElGamal functions and modular operations. ElGamal functions are widely used in cryptographic systems. Our watermarking scheme is robust against LSB(least significant bit) attacks and gamma correction attack, and also perceptually invisible. We demonstrate the characteristics of our proposed watermarking scheme through experiments. It is necessary to proceed as the future work the algorithm of achieving at the same time both the pseudo-randomness for the steno-key generation and the asymmetric-key generation.

Analysis of NIST PQC Standardization Process and Round 4 Selected/Non-selected Algorithms (NIST PQC 표준화 과정 및 Round 4 선정/비선정 알고리즘 분석)

  • Choi Yu Ran;Choi Youn Sung;Lee Hak Jun
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • As the rapid development of quantum computing compromises current public key encryption methods, the National Institute of Standards and Technology (NIST) in the United States has initiated the Post-Quantum Cryptography(PQC) project to develop new encryption standards that can withstand quantum computer attacks. This project involves reviewing and evaluating various cryptographic algorithms proposed by researchers worldwide. The initially selected quantum-resistant cryptographic algorithms were developed based on lattices and hash functions. Currently, algorithms offering diverse technical approaches, such as BIKE, Classic McEliece, and HQC, are under review in the fourth round. CRYSTALS-KYBER, CRYSTALS-Dilithium, FALCON, and SPHINCS+ were selected for standardization in the third round. In 2024, a final decision will be made regarding the algorithms selected in the fourth round and those currently under evaluation. Strengthening the security of public key cryptosystems in preparation for the quantum computing era is a crucial step expected to have a significant impact on protecting future digital communication systems from threats. This paper analyzes the security and efficiency of quantum-resistant cryptographic algorithms, presenting trends in this field.

Secure routing security algorithm S-ZRP used Zone Routing Protocol in MANET (MANET환경에서 Zone Routing Protocol을 이용한 안전한 경로설정 보안 알고리즘 S-ZRP)

  • Seo Dae-Youl;Kim Jin-Chul;Kim Kyoung-Mok;Oh Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.4 s.346
    • /
    • pp.13-21
    • /
    • 2006
  • An mobile ad hoc network(MANET) is a collection of wireless computers (nodes), communicating among themselves over multi-hop paths, without the help of any infrastructure such as base stations or access points. Prior research in MANET has generally studied the routing problem in a non-adversarial setting, assuming a trusted environment. In this paper, we design and evaluate the Secure Zone Routing Protocol(T-ZRP), a secure ad hoc network routing protocol is based on the design of the hash chain. In order to support use with nodes of limited CPU processing capability, and to guard against Denial-of-Service attacks in which an attacker attempts to cause other nodes to consume excess network bandwidth or processing time, we use efficient one-way hash functions and don't use asymmetric cryptographic operations in the protocol. Proposed algorithm can safely send to data through authentication mechanism and integrity about routing establishment.

A Secure Digital Watermarking Scheme based on RSA Function (RSA 함수에 기반한 안전한 워터마킹 기법)

  • Lee, Jean-Ho;Kim, Tai-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.3
    • /
    • pp.220-228
    • /
    • 2001
  • Digital watermarking is a technique for the purpose of protecting the ownership of the image by embedding invisible watermarks in a digital imnge. To guarantee the security of the digital watermarking scheme for copyright protection, it is required to satisfy some requirements robustness and perceptual invisibility which provided by the location of embedded bits, the public watermarking algorithm, and the hidden use of the key, which can protect unauthorized accesses from illegal users. For this, in this paper we propose a new copyright watermarking scheme, which is based on one-way hash functions using RSA functions and modular operations. RSA functions are widely used in cryptographic systems. Our watermarking scheme is robust against LSB(Jeast significant bit) attacks and gamma corresction attack, and is also perceptually invisible. We demonstrate the characteristics of our proposed watermarking scheme through experiments.

  • PDF