• Title/Summary/Keyword: Cryogenic tank

Search Result 161, Processing Time 0.02 seconds

Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure (상온 상압의 이산화탄소 저장용 탱크를 위한 예냉과정의 비선형 모델링 및 비례-적분 제어 적용)

  • Lim, Yu Kyung;Lee, Seok Goo;Dan, Seungkyu;Ko, Min Su;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.574-580
    • /
    • 2014
  • Storage tanks of Carbon dioxide ($CO_2$) carriers utilized for the purpose of carbon capture and storage (CCS) into subsea strata have to undergo a pre-cooling session before beginning to load cryogenic liquid cargos in order to prevent physical and thermal deterioration of tanks which may result from cryogenic $CO_2$ contacting tank walls directly. In this study we propose dynamic model to calculate the tank inflow of $CO_2$ gas injected for precooling process and its dynamic simulation results under proportional-integral control algorithm. We selected two cases in which each of them had one controlled variable (CV) as either the tank pressure or the tank temperature and discussed the results of that decision-making on the pre-cooling process. As a result we demonstrated that the controlling instability arising from nonlinearity and singularity of the mathematical model could be avoided by choosing tank pressure as CV instead of tank temperature.

Helium Quantity Estimation for LOx Tank Pressurization of a Restartable Pressure-fed Propulsion System (재 점화가 있는 가압식 추진기관의 액체산소 탱크 가압 헬륨량 산정)

  • Cho, Gyu-Sik;Jung, Young-Suk;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.77-81
    • /
    • 2012
  • In a cryogenic propellant tank the pressurant is contracted due to heat loss and the propellant itself evaporates. On a restartable propulsion system such phenomena are more intensive because the propellant contacts with the pressurant on the larger surface during the coast flight. Such heat and mass transfer phenomena should be considered for estimating the amount of pressurant. On the hypothesis that the heat and mass transfer quasi-equilibrium is achieved during the coast flight, the calculation process of the equilibrium pressure is presented. On the process the amount of loaded helium on the Falcon-1 second stage is calculated.

Helium Quantity Estimation for LOx Tank Pressurization of a Restartable Pressure-fed Propulsion System (재 점화가 있는 가압식 추진기관의 액체산소 탱크 가압 헬륨량 산정)

  • Cho, Gyu-Sik;Jung, Young-Suk;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.201-205
    • /
    • 2011
  • In a cryogenic propellant tank the pressurant is contracted due to heat loss and the propellant itself evaporates. On a restartable propulsion system such phenomena are more intensive because the propellant contacts with the pressurant on the larger surface during the coast flight. Such heat and mass transfer phenomena should be considered for estimating the amount of pressurant. On the hypothesis that the heat and mass transfer quasi-equilibrium is achieved during the coast flight, the calculation process of the equilibrium pressure is presented. On the process the amount of loaded helium on the Falcon-1 second stage is calculated.

  • PDF

Tensile and Fatigue Strengths of STS304L for LNG Membrane Storage Tank (멤브레인 LNG 저장탱크용 STS304L의 인장 및 피로강도)

  • Na, Seong Hyeon;Kim, Yeong Gyun;Kim, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.9-14
    • /
    • 2016
  • STS304L of membrane structure has been used for a LNG storage tank and has exposed long time under the cryogenic temperature. The purposes of this study are to evaluate the mechanical properties of base and used materials for STS304L of membrane. The tensile and high cycle fatigue tests were investigated for STS304L of membrane used over 20 years at room temperature and $-162^{\circ}C$. In addition, the test of base STS304L was performed in order to compare with used material properties. The chemical composition and phase change were investigated from EDS and XRD. From results of tensile test, yield and ultimate tensile strengths of used STS304L are smaller than those of base STS304L. S-N curves were obtained from fatigue tests at both temperatures. Also, P-S-N curves were presented with statistical method recommend by JSME-S002. Fractography was conducted for analysis of fracture mechanisms.

Finite Element Analysis of Membrane for LNG Storage Tank (액화천연가스 저장탱크용 멤브레인의 유한요소해석)

  • 김영규;윤인수;홍성호;전인기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2797-2804
    • /
    • 1994
  • This paper analyzes the behaviors of corrugated membrane under the cryogenic liquid pressure and thermal loading using the FEM analysis program MARC. The FEM calculations were carried out on the basis of measured data of Technigaz membrane. It is very important to know the concentration levels and distributions of stress in the corrugated membrane. A quarter of the membrane sheet in place of the whole membrane was simulated because of its geometric symmetricity. The calculated results of the concentrated stress showed that the maximum stress occurs at the knot parts and at the root corner radius of the corrugations. The FEM calculated results indicated that the ring knot membrane which was developed in this study showed uniformly distributed stress and the lowest stress levels in the cross knot area in comparison with other two membranes. These results are very important to optimize the shape and improve the safety of membrane structure.

A Study on the Strength Safety of the Prestressed Concrete Outer Tank for a Membrane LNG Storage Tank (멤브레인식 LNG 저장탱크용 PC 외부탱크의 강도안전성에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • This paper presents the numerical study on the strength safety of the prestressed concrete outer tank for a LNG storage tank, which is manufactured by sets of membrane panels with special corrugations. This study for a finite element analysis assumes that the membrane panel of the inner tank was fractured and the liquefied natural gas stored in the inner membrane tank was leaked to the prestressed concrete outer tank. The stress and displacement of the outer tank have been analyzed for five different loadings, which are originated by a hydrostatic pressure and a weight of a LNG, a temperature difference, a weight of the prestressed concrete and a boil-off gas pressure. The computed FEM results indicate that the PC outer tank with a storage capacity of 200,000$m^3$ has a good strength safety for a leaked LNG from the membrane inner tank, but the increased cryogenic loadings in which are originated by a leaked LNG decreases the strength safety of the PC structure. This may lead to the collapse of the outer storage tank.

  • PDF

The Development of Wall Membrane for LNG Storage Tank (LNG 저장탱크용 벽체 멤브레인 개발)

  • Oh, B.T.;Hong, S.H.;Yoon, I.S.;Kim, Y.K.;Seo, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.907-912
    • /
    • 2001
  • KOGAS had developed the Ring-knot membrane for LNG storage tank. But we found that some modifications were needed in using the Ring-knot membrane for the commercial LNG storage tanks. So, both analytical and experimental studies have been performed to investigate the strength of the new membrane and the reaction force at the anchor point. Using nonlinear FEM code and experiments, the stress analysis of the new corrugated membrane shapes subject to the cryogenic liquid pressure and thermal loading are performed to ensure the stability and fatigue strength of the new membrane. This paper reports on the results of investigations into this new type of membrane.

  • PDF

Analysis of Liquid Oxygen Feeding System for Pump-Fed Liquid Propulsion Rocket

  • Cho, Nam-Kyung;Kwon, Oh-Sung;Cho, In-Hyun;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.211-215
    • /
    • 2004
  • For design of cryogenic propellant feeding system, one of the main requirements is to meet temperature requirement for satisfying turbo-pump NPSH requirement. In this paper improved method of estimating the thermal stratification in liquid oxygen tank is presented to help design. In the case of liquid rocket using turbo-pump, the inner pressure of liquid oxygen tank is maintained low, so vaporization of liquid oxygen is generally occurred. In this paper, inner process of LOX tank is analyzed by two phase flow modeling. The vaporization rate and required helium mass is investigated.

  • PDF