• Title/Summary/Keyword: Cryogenic liquid

Search Result 412, Processing Time 0.028 seconds

Effects of Cryogenic Temperature on Wear Behavior of 22MnB5 Under Cold Stamping (극저온이 22MnB5강의 냉간 스탬핑 마모에 미치는 영향)

  • Ji, Min-Ki;Noh, Yeonju;Kang, Hyun-Hak;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.241-246
    • /
    • 2022
  • This paper presents the effects of cryogenic temperature on the wear behavior of 22MnB5 blank under cold stamping. After immersing the blank in liquid nitrogen (LN2) for 10 min, a strip drawing test was performed within 10 s. The hardness was measured using the Rockwell hardness test, which increased from 165 HV at 20℃ to 192 HV at cryogenic temperature. The strip drawing test with 22MnB5 blank and SKD61 tool steel shows that for the different wear mechanisms on the tool surface with respect to temperature; adhesive wear is dominant at 20℃, but abrasive wear is the main mechanism at cryogenic temperature. As the friction test is repeated, sticking gradually increases on the tool surface at 20℃, whereas the scratch increases at cryogenic temperature. For the friction behavior, the friction coefficient rapidly increases when adhesive wear occurs, and it occurs more frequently at 20℃. The results for nanoindentation near the worn blank surface indicate a difference of 1.3 GPa at 20℃ and 0.8 GPa at cryogenic temperature compared to the existing hardness, indicating increased deformation by friction at 20℃. This occurs because thermally activated energy available to move the dislocation decreases with decreasing temperature.

A Study on Cryogenic Line Chill Down Characteristics of LNG (극저온 LNG 배관냉각 특성에 대한 연구)

  • BYEONGCHANG, BYEON;KYOUNG JOONG, KIM;SANGKWON, JEONG;MO SE, KIM;SANGYOON, LEE;KEUN TAE, LEE;DONGMIN, KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.808-818
    • /
    • 2022
  • In this research paper, we investigated the cryogenic line chill down characteristics of liquefied natural gas (LNG). A numerical analysis model was established and verified so that it can calculate the precise cooling characteristics of cryogenic fluid for the stable and safe utilization especially such as LNG and liquid hydrogen. The numerical modeling was programmed by C++ as an one-dimensional homogeneous model. The thermohydraulic cooling process was simulated using mass, momentum, energy conservation equations and appropriate heat transfer correlations. In this process, the relevant heat transfer correlations for nuclear boiling, transition boiling, film boiling, and single-phase heat transfer that can predict the experimental results were implemented. To verify the numerical modeling, several cryogenic line chill down experiments using LNG were conducted at the Korea Institute of Machinery & Materials (KIMM) LNG and Cryogenic Technology Center.

Thermal Stress Analysis of the Support System in Cryogenic Liquid Hydrogen Storage Tank (극저온 액체수소 저장탱크 지지시스템의 열응력 해석)

  • Park, Dong-Huen;Yun, Sang-Kook;Lee, Jung-Hyan;Jo, Won-Il;Baek, Young-Sun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.239-245
    • /
    • 2005
  • The reduction of heat transfer rate to the stored liquid hydrogen from outside condition is extremely important to keep the liquid hydrogen longer. In this paper the highly efficient support system for the liquid hydrogen storage vessel was newly developed and analysed. The support system was composed of a spherical ball in the center of supporter to reduce the heat transfer area, with its above and below supporting blocks which are the SUS and PTFE blocks inserted in the SUS tube. The heat transfer rate and temperature distribution of the support system were evaluated by FLUENT, and the thermal stress and strain were estimated by ANSYS software. The results showed that the heat transfer rate from outer vessel to inner one was extremely decreased compared with the common method which is simply SUS tubes inserted between inner and outer tanks. The thermal stress and strain were obtained well below the limited values. As a result, it was the most efficient support system of storage vessel for liquid hydrogen and most cryogenic fluids.

  • PDF

Dynamic Electrical Breakdown Characteristics of Cryogenic Liquid (극저온 액체의 동적 절연파괴 특성)

  • 김상현;김현희;김영석;정종만;정순용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.4
    • /
    • pp.321-326
    • /
    • 1998
  • Electrical breakdown characteristics of liquid nitrogen($LN_2$) taking into consideration for application of high $T_c$ superconductor is very important. Also $LN_2$ will be used as both coolant and insulator in superconducting generator. In this paper, we investigated ac breakdown characteristics of cryogenic nitrogen gas above a $LN_2$ for rod-to plane electrode configuration. As result the breakdown mechanism of $LN_2$is dependence on bubble effect. And breakdown voltage is a ratio on bubble s size but electrodes arrangement is to make no difference. The breakdown voltage decreases slightly with increasing flow velocity, it again decreases abruptly with increasing flow velocity. These results were interpreted as the within pressure of rod electrode and Maxwell force.

  • PDF

A Study on Life Characteristics of Insulator for Stability of a HTS equipment (고온초전도 기기의 신뢰성 확보를 위한 고려한 절연재료의 수명 특성 연구)

  • Baek, Seung-Myeong;Kim, Hyun-Hee;Kim, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.965-966
    • /
    • 2007
  • For practical electrical insulation design of high temperature superconducting (HTS) power apparatuses, knowledge of the dielectric behavior of insulators in cryogenic liquid such as liquid nitrogen ($LN_2$) is essential. So in this paper, we discussed experimental investigations of breakdown and V-t characteristics of several insulators such as Kapton and glass fiber reinforced plastic (GFRP) that are candidates of insulator for HTS apparatus in cryogenic liquid. And we investigated the degradation of these insulation samples after breakdown with the microscope and SEM photograph. Moreover, survival and hazard analysis was performed.

  • PDF

Development of Numerical Analysis Model on Cryogenic Vessel for Safety Pressure Maintenance and Control of Liquid Hydrogen BOG (액체 수소 BOG 안전 압력 유지 및 제어를 위한 극저온 용기의 수치 해석 모델 개발)

  • YOUNG MIN SEO;HYUN WOO NOH;TAE HYUNG KOO;DONG WOO HA;ROCK KIL KO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.3
    • /
    • pp.280-289
    • /
    • 2024
  • In this study, a cryogenic vessel was constructed to maintain and control the safe pressure of liquid hydrogen boil-off gas (BOG), and the numerical analysis was conducted on the development of computational fluid dynamics model inside the high-pressure vessel. An evaluation system was constructed using cryogenic inner and outer containers, pre-cooler, upper flange, and internal high-pressure container. We attempted to analyze the performance of the safety valve by injecting relatively high temperature hydrogen gas to generate BOG gas and quickly control the pressure of the high-pressure vessel up to 10 bar. As a results, the liquid volume fraction decreased with a rapid evaporation, and the pressure distribution increased monotonically inside a high pressure vessel. Additionally, it was found that the time to reach 10 bar was greatly affected by the filling rate of liquid hydrogen.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.

Automated Cold Volume Calibration of Temperature Variation in Cryogenic Hydrogen Isotope Sorption Isotherm (극저온(20K) 수소동위원소 흡착 등온선의 온도 변화에 대한 자동 저온 부피 교정)

  • Park, Jawoo;Oh, Hyunchul
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The gas adsorption isotherm requires accurate measurement for the analysis of porous materials and is used as an index of surface area, pore distribution, and adsorption amount of gas. Basically, adsorption isotherms of porous materials are measured conventionally at 77K and 87K using liquid nitrogen and liquid argon. The cold volume calibration in this conventional method is done simply by splitting a sample cell into two zones (cold and warm volumes) by controlling the level sensor in a Dewar filled with liquid nitrogen or argon. As a result, BET measurement for textural properties is mainly limited to liquefied gases (i.e. $N_2$ or Ar) at atmospheric pressure. In order to independently investigate other gases (e.g. hydrogen isotopes) at cryogenic temperature, a novel temperature control system in the sample cell is required, and consequently cold volume calibration at various temperatures becomes more important. In this study, a cryocooler system is installed in a commercially available BET device to control the sample cell temperature, and the automated cold volume calibration method of temperature variation is introduced. This developed calibration method presents a reliable and reproducible method of cryogenic measurement for hydrogen isotope separation in porous materials, and also provides large flexibility for evaluating various other gases at various temperature.

Temperature Prediction of Al6061 Tube in Cryogenic Heat Treatment by CFD Analysis and Experimental Verification (CFD 해석을 이용한 Al6061 튜브의 극저온 열처리 시 소재의 온도 예측 및 실험적 검증)

  • Hwang, Seong-Jun;Ko, Dae-Hoon;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1210-1216
    • /
    • 2011
  • The purpose of this study is to establish the analysis method for prediction of temperature during cryogenic heat treatment. Experimental cryogenic heat treatment is conducted to observe the phenomena such as boiling of fluid, ice layer on the material surface and to measure the temperature distribution of Al6061 tube. The CFD analysis considering the observed phenomena in the experiment is performed to predict the temperature distribution and convection heat transfer coefficient at each stage of cryogenic heat treatment, in which the boiling of fluid is considered as the multi-phase condition of vapour and liquid. The formation of ice layer on the tube surface is also modeled between material and fluid. The predicted results are in good agreement with the experimental ones. From the results, it is shown that the analysis method can predict the temperature distribution and convection heat transfer coefficient during cryogenic heat treatment.

헬륨가스 분사에 의한 액체질소 냉각에 관한 연구

  • Chung, Yong-Gap;Cho, Nam-Gyeong;Kil, Kyeong-Seop;Song, Yi-Hwa;Kim, Yu;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.205-212
    • /
    • 2004
  • In this paper, to satisfy the temperature requirement of turbopump-inlet condition, the cooling of cryogenic propellant is performed at the simulated suction-line of the Launch Vehicle. The cooling method is by using gas helium injection. This paper investigates the effect of helium injection on liquid nitrogen, which simulates the liquid oxygen. By using helium injection, subcooling of liquid nitrogen can be achieved and in the condition of v/vL≒0.8min-¹ approximately in four minutes subcooling temperature can be achieved.

  • PDF