• 제목/요약/키워드: Cryogenic heat exchanger

검색결과 58건 처리시간 0.026초

Design Considerations on the Standby Cooling System for the integrity of the CNS-IPA

  • Choi, Jungwoon;Kim, Young-ki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.104-104
    • /
    • 2015
  • Due to the demand of the cold neutron flux in the neutron science and beam utilization technology, the cold neutron source (CNS) has been constructed and operating in the nuclear research reactor all over the world. The majority of the heat load removal scheme in the CNS is two-phase thermosiphon using the liquid hydrogen as a moderator. The CNS moderates thermal neutrons through a cryogenic moderator, liquid hydrogen, into cold neutrons with the generation of the nuclear heat load. The liquid hydrogen in a moderator cell is evaporated for the removal of the generated heat load from the neutron moderation and flows upward into a heat exchanger, where the hydrogen gas is liquefied by the cryogenic helium gas supplied from a helium refrigeration system. The liquefied hydrogen flows down to the moderator cell. To keep the required liquid hydrogen stable in the moderator cell, the CNS consists of an in-pool assembly (IPA) connected with the hydrogen system to handle the required hydrogen gas, the vacuum system to create the thermal insulation, and the helium refrigeration system to provide the cooling capacity. If one of systems is running out of order, the operating research reactor shall be tripped because the integrity of the CNS-IPA is not secured under the full power operation of the reactor. To prevent unscheduled reactor shutdown during a long time because the research reactor has been operating with the multi-purposes, the introduction of the standby cooling system (STS) can be a solution. In this presentation, the design considerations are considered how to design the STS satisfied with the following objectives: (a) to keep the moderator cell less than 350 K during the full power operation of the reactor under loss of the vacuum, loss of the cooling power, loss of common electrical power, or loss of instrument air cases; (b) to circulate smoothly helium gas in the STS circulation loop; (c) to re-start-up the reactor within 1 hour after its trip to avoid the Xenon build-up because more than certain concentration of Xenon makes that the reactor cannot start-up again; (d) to minimize the possibility of the hydrogen-oxygen reaction in the hydrogen boundary.

  • PDF

설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제28권6호
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.

저열유속에서 상변화를 수반하는 메탄의 유동거동특성 (The Flow Behavior Characteristics of Methane with Phase Change at Low Heat Flux)

  • 최부홍
    • 해양환경안전학회지
    • /
    • 제20권1호
    • /
    • pp.96-103
    • /
    • 2014
  • 극저온 액체 상태의 LNG는 주거용과 산업용으로 공급되기 전에 가스 상태로 변환된다. 이러한 재가스화 과정 중에 LNG는 $83.7{\times}10^4$ kJ/kg 정도의 많은 냉열에너지를 제공한다. 이 냉열에너지를 일부 선진국들에서는 질소, 수소, 헬륨과 같은 극저온 유체들의 액화, 제빙 및 냉방시스템에 이용하고 있다. 따라서 우리나라에서도 인천, 평택 및 통영 LNG 인수기지 주변에 LNG의 냉열에너지를 이용한 냉열에너지 회수시스템을 설립할 필요가 있다. 여기서는 저열유속상태에서 상변화를 동반하는 LNG의 유동거동 특성을 파악하기 위해 LNG의 85 %를 차지하는 메탄을 작동유체로 사용하였다. 또한 본 논문은 극저온 열교환기 내부를 흐르는 메탄과 질소, 프로판, R11 및 R134a의 유동경계에 영향을 주는 관 직경, 관의 경사각도 및 포화압력의 효과를 보여준다. 또한 여기서 얻어진 이론적 연구결과와 기존의 실험 데이터와도 비교 되었다. 그리고 메탄의 유동경계에 주는 파이프의 경사각도의 영향은 매우 큼을 알 수 있었다.

Development of high capacity stirling cryocooler

  • Ko, Junseok;Yeom, Hankil;Kim, Hyobong;Hong, Yong-Ju;In, Sehwan;Park, Seong-Je
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.51-56
    • /
    • 2015
  • Cryogenic cooling system for HTS electric power devices requires a reliable and efficient high-capacity cryocooler. A Striling cryocooler with a linear compressor can be a good candidate. It has advantages of low vibration and long maintenance cycle compared with a kinematic-driven Stirling cryocooler. In this study, we developed dual-opposed linear compressor of 12 kW electric input power with two 6 kW linear motors. Electrical performance of fabricated linear compressor is verified by experimental measurement of thrust constant. The developed Stirling cryocooler has gamma-type configuration. Piston and displacer are supported with flexure spring. A slit-type heat exchanger is adopted for cold and warm-end, and the generated heat is rejected by cooling water. In cooling performance test, waveforms of voltage, current, displacement and pressure are obtained and their amplitude and phase difference are analysed. Moreover, temperatures of cooling water, housing and linear motor are recorded and electric power parameters of driving circuit are also obtained. The developed Stirling cryocooler reaches to 47.8 K within 23.4 min. with no-load. From heat load tests, it shows cooling capacity of 440 W at 78.1 K with 6.45 kW of electric input power and 19.4 of % Carnot COP.

극저온 맥동 압력 조건에서의 재생기에 관한 실험적 연구 (Experimental Study on Regenerator Under Cryogenic Temperature and Pulsating Pressure Conditions)

  • 남관우;정상권;정은수
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1095-1101
    • /
    • 2002
  • An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of regenerator at cryogenic temperature under pulsating pressure condition. The regenerator was pressurized and depressurized by a compressor with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of a liquid nitrogen heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure drop across the regenerator was also measured to see if it could be predicted by a friction factor at steady flow condition. The operating frequency of pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stilting cryocoolers. First, the measured friction factor for typical wire screen mesh regenerator was nearly same as steady flow friction factor for maximum oscillating Reynolds number up to 100 at less than 9 Hz. For 60 Hz operations, however, the discrepancy between oscillating flow friction factor and steady flow one was noticeable if Reynolds number was higher than 50. Second, the ineffectiveness of regenerator was directly calculated from experimental data when the cold-end was maintained around 100 K and the warm-end around 293 K, which simulates an actual operating condition of cryogenic regenerator. Influence of the operating frequency on ineffectiveness was discussed at low frequency range.

가압제 토출시 온도강하율에 대한 연구 (Study on Temperature Drop Rate during Pressurant Discharge)

  • 정용갑;홍문근;권오성;김영목
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.116-121
    • /
    • 2006
  • 액체로켓 추진시스템에서 가압시스템은 발사체 추진제 탱크의 얼리지 공간에 제어된 가스를 공급하는 것이다 가압시스템에서 고온 가스 열교환기를 적용하는 데는 가압제의 비용적을 증가시켜 전체 발사체 시스템의 중량을 감소시키는 장점이 있다. 그러므로 가압시스템 성능에 있어서 주목할 만한 개선점은 특히 극저온 시스템에서 얻어질 수 있다. 본 연구에서는 외부 유체와 가압제로 공기와 $CN_2$를 각각 적용하였다. 가압제 토출 특성에 관한 수치 해석은 PTF에서 수행된 실험 결과와 비교되었다. 해석과 실험 결과의 오차는 약 ${\pm}15%$ 이내로 나타났다. 이러한 해석적 접근을 사용하면 액체산소에 잠겨진 극저온 가압제의 온도강하율을 예측할 수 있을 것으로 사료된다.

  • PDF

가압가스 온도에 따른 극저온 추진제탱크 가압가스 요구량 (Required Pressurant Mass for Cryogenic Propellant Tank with Pressurant Temperature Variation)

  • 권오성;김병훈;조인현;고영성
    • 한국항공우주학회지
    • /
    • 제38권12호
    • /
    • pp.1202-1208
    • /
    • 2010
  • 추진제가 배출되는 동안 발사체 추진제탱크의 압력을 유지하기 위해 필요한 가압가스의 요구량을 예측하는 것은 가압시스템의 설계를 위해 반드시 필요하다. 추진제탱크로 유입되는 가압가스의 온도는 가압가스의 요구량에 가장 큰 영향을 미치는 요소로서, 저장탱크의 무게, 열교환기의 크기 등 가압시스템의 개발에 있어 중요한 설계기준이 된다. 이에 극저온 추진제탱크 내에 저장된 추진제를 가압하여 배출하는 실험을 수행하였고, 가압가스 온도 조건에 따른 가압가스 요구량과 얼리지 온도분포를 측정하였다. 그 결과 가압가스의 온도가 높을수록 요구량 자체는 감소하였지만, 이상적인 가압가스 요구량 대비 실제 필요량의 비율은 증가하였다.

SINDA/FLUINT를 활용한 KSLV-I 추진기관 공급계 해석

  • 조남경;김병훈;권오성;길경섭;정용갑;나한비;조인현
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.116-123
    • /
    • 2004
  • KSlV-I 추진기관 공급계의 세부 해석을 통하여 각 부품별 요구조건을 설정하였다. 해석에는 범용 열유체 해석 프로그램인 SINDA/FLUINT를 활용하였다. 열전달 모델과 유동 모델을 적용함으로서 해석의 신뢰성을 높였으며 각 부품에 대한 운용 조건을 설정하였다. 본 해석을 통하여 SRR(System Requirement Review)에서 제시된 각 부분별 요구조건을 검토하였으며, 부품 선정을 위한 기본 자료로 활용할 수 있었다.

  • PDF

Simulated winding temperature distribution of HTS transformer cooled by sub-cooled liquid nitrogen

  • Han, J.H.;Choi, K.D.;Kim, T.Y.;Chang, T.;Kim, W.S.;Kim, S.H.;Hahn, S.Y.;Kim, S.R.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권4호
    • /
    • pp.51-54
    • /
    • 2004
  • A 1 MV A single phase high temperature superconducting (HTS) transformer was manufactured. In order to reduce AC loss generated in the HTS winding, winding was concentrically arranged. Operation temperature is set at 65K to increase the critical current and reduce the amount of HTS tape usage and the volume. The cryogenic system which consists of main cryostat with the windings and secondary cryostat with 2 GM coolers and cryopump on top and heat exchanger inside is also designed and the cooling performance is simulated with Fluent. Temperature distribution of the windings is investigated whether the windings are kept under designed operation temperature.

SQUID 냉각장치용 극저온 시스템 개발 (Research of Cryogenic Helium Refrigerator System for SQUID)

  • 이금배;백일현
    • 대한설비공학회지:설비저널
    • /
    • 제18권2호
    • /
    • pp.121-129
    • /
    • 1989
  • 헬륨을 이용한 극저온 냉동기는 압축기(compressor)을 통하여 압력을 10-20 기압 정도로 높혀준후 여러 단계의 열교환기(heat exchanger)를 통하여 상전위온도(maximum inversion temperature) 이하로 떨어뜨린후 Joule-Thomson 밸브를 통하면 4K까지 온도가 떨어진다. 이때 압력은 1기압 정도이며 헬륨가스는 액체로 변한다. 본 연구의 목적은 Gifford-McMahon 냉동기와 Joule-Thomson 냉동기의 혼합형인 극저온 냉동기를 설계, 제작하여 죠셉슨(Josephson) 소자를 이용한 SQUID(초전도양자 간섭장치), 여러 종류의 탐지기, 컴퓨터 소자 개발 등을 위한 냉동기로 사용하는데 그 목적이 있다. 개발되는 법동기의 용량은 1 W이며, 최저온도는 4K 정도가 된다.

  • PDF