• Title/Summary/Keyword: Cryogenic crush

Search Result 2, Processing Time 0.016 seconds

Preparation of Rubber Particulates for Micro Dust Study using Cryogenic Crushing

  • Chae, Eunji;Son, Chae Eun;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.330-334
    • /
    • 2019
  • Cryogenic crushing techniques have been employed for recycling waste rubber articles and for extracting residual organic additives present in rubber samples. Rubber particulate derived from tire tread abrasion is one of the key components of road dust. Therefore, in this work, we prepared rubber particulates using a cryogenic crusher and characterized their shapes as well as size distributions according to the type of rubber. The rubber particulates exhibited uneven surfaces with the presence of some small pieces. The order of the particle size distribution was observed to be: NR > BR > SBR. Subsequently, carbon black was added; this led to a decrease in the particle size and the shape becoming rougher. The crushed particulates of the carbon black-filled samples comprised agglomerated shapes of small pieces, which were similar in shape to that of wear debris in tire tread. It was discovered that crosslink density was one of the principal factors that led to the formation of small crushed particulates. The small particulates obtained by cryogenic crushing can be utilized as model rubber particulates for researching micro dust.

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.