• Title/Summary/Keyword: Cryogenic cold trap

Search Result 2, Processing Time 0.015 seconds

Analysis of Trace Impurities in The Bulk Gases by a Cold Concentration Method (저온 농축법에 의한 극미량 성분 가스분석)

  • Lee Taeck-Hong;Hong So Young;Jung Woo Chan;Kim Young Rak;Suh Jung Woo;Han Ju Tack;Park Doo Seon;Son Moo Ryong
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.260-265
    • /
    • 1997
  • Analysis of trace impurities in the bulk .gas has been very important with the development of semi-conductor related industry. In the paper, we reported the analysis of the trace impurites of carbon monoxide and methane in the bulk helium and hydrogen by the GC-TCD with a cold nitrogen trap. We compared these results by the paraallel analysis. All data showed a good correspondence, showing reliable statistical error ranges.

  • PDF

Development of a Noble Gas Isotope Dilution Mass Spectrometric System Combined with a Cryogenic Cold Trap (초저온 냉각 트랩을 결합한 비활성기체 동위원소 희석 질량분석 시스템의 제작)

  • HONG, BONGJAE;SHIN, DONGYOUB;PARK, KEYHONG;HAHM, DOSHIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.144-157
    • /
    • 2022
  • Noble gases, which are chemically inert and behave conservatively in marine environments, have been used as tracers of physical processes such as air-sea gas exchange, mixing of water masses, and distribution of glacial meltwater in the ocean. For precise measurements of Ne, Ar, and Kr, we developed a mass spectrometric system consisting of a quadrupole mass spectrometer (QMS), a high vacuum preparation line, an activated charcoal cryogenic trap (ACC), and a set of isotope standard gases. The high vacuum line consists of three sections: (1) a sample extraction section that extracts the dissolved gases in the sample and mixes them with the standard gases, (2) a gas preparation section that removes reactive gases using getters and separates the noble gases according to their evaporation points with the ACC, and (3) a gas analysis section that measures concentrations of each noble gas. The ACC attached to the gas preparation section markedly lowered the partial pressures of Ar and CO2 in the QMS, which resulted in a reduced uncertainty of Ne isotope analysis. The isotope standard gases were prepared by mixing 22Ne, 36Ar, and 86Kr. The amounts of each element in the mixed standard gases were determined by the reverse isotope dilution method with repeated measurements of the atmosphere. The analytical system achieved precisions for Ne, Ar, and Kr concentrations of 0.7%, 0.7%, and 0.4%, respectively. The accuracies confirmed by the analyses of air-equilibrated water were 0.5%, 1.0%, and 1.7% for Ne, Ar, and Kr, respectively.