• Title/Summary/Keyword: Cryogenic butterfly valve

Search Result 7, Processing Time 0.019 seconds

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 2 : Flow Characteristics under Cryogenic Condition) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제2부 : 극저온에서의 밸브 유동특성))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Bum-Suk;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.20-28
    • /
    • 2008
  • Recently, butterfly valves are used as control valves for industrial process. However, there are not so many reports on cryogenic butterfly valves in spite of broad application in LNG storage station and LNG carriers. Present study is focused on the investigation of the detailed hydrodynamic and aerodynamic characteristics of cryogenic butterfly valves to contribute to the operation during the handling on LNG transportation system, and to the practical utilization in design of butterfly valves and actuators. The results show that large recirculation vortices in the region downstream of the valve are founded and the cavitation flows are intensively generated on the surface of valve disc at the relatively small opening angle. The aerodynamic characteristics, lift, drag and torque, acting on the valve disc are calculated. The pressure distribution and the pressure loss coefficient of the cryogenic butterfly valve show almost similar pattern with those of the butterfly valve which is used on the normal temperature.

Flow Characteristics of Cryogenic Butterfly Valve for LNG Carrier (Part 1 : CFD Analysis and its Comparison with Experimentation) (LNG선용 버터플라이밸브의 유동특성에 관한 연구 (제1부 : CFD해석과 실험결과의 비교))

  • Kim, Sang-Wan;Choi, Young-Do;Kim, Jung-Hwan;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • Butterfly valves are widely used as control valves for industrial process. For the definition of optimum configuration of the valve, wide range of related studies has been actively conducted in the case of working fluids of water or air under the normal temperature. Recently, internal flow and performance characteristics of cryogenic butterfly valve for LNG carrier take a growing interest in the field of research and development. Therefore, present study is aimed to investigate the internal flow and performance characteristics of the cryogenic butterfly valve because the study result for the valve can be hardly found at present. Part 1 of this paper describes the study result of a butterfly valve model under the condition of the normal temperature. Succeeding Part 2 of this paper will describe the internal flow characteristics of a cryogenic butterfly valve for LNG carrier. The results of Part 1 show that pressure loss coefficients and flow rate coefficients obtained by the present experiment and CFD analysis agree well each other. Moreover, internal flow visualization for the valve by CFD analysis and PIV measurement have revealed complicated flow patterns of the internal flow field in detail.

Prediction of Cavitation Occurrence in a Cryogenic Butterfly Valve by Flow Velocity (극저온 버터플라이 밸브의 유속에 따른 캐비테이션 발생 예측)

  • Kim, Seong-Dong;Kim, Beom-Seok;Choi, Young-Do;Lee, Young-Eo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.923-930
    • /
    • 2008
  • The butterfly valve is widely used in the industrial field as an on-off or a flow control valve. When the butterfly valve is used as a flow control valve. cavitation sometimes occurs in the range of high flow rate because of the small valve opening. Therefore. the pressure loss and the cavitation characteristics are investigated by use of a commercial CFD code. The results show that the possibility of cavitation occurrence in the cryogenic butterfly valve is very high in the case of valve opening angle below 10 degree and incident velocity over 6m/s. By increasing the inlet velocity at 10 degree of valve opening angle. the value of loss coefficient increased. However. by increasing the inlet velocity at 50 degree of valve opening angle. the value of loss coefficient decreased.

Analysis method on Structural Safety Evaluation of Butterfly Valve of Piping for LNG carrier (LNG 선박용 배관에 사용되는 Butterfly Valve의 구조 안정성 평가에 관한 해석 기법)

  • Park, Young-Chul;Park, Han-Seok;Kim, Si-Pom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.76-81
    • /
    • 2008
  • A cryogenic butterfly valve is used to transfer the liquefied natural gas (LNG) which temperature is $-162^{\circ}C$. This valve is core part in the piping system using LNG. This paper performed coupling analysis using FEM to evaluate safety of cryogenic butterfly valve. Flow analysis is calculated numerically the CAE and CFD methods are useful to predict the thermal matter and the inner flow field of the valve. Thermal analysis and structural analysis used ANSYS Workbench.

  • PDF

3D Digital Mockup Application of Cryogenic Butterfly Valve, LNG Carrier (DMU(Digital Mockup) 기법을 적용한 LNG 선박용 극저온 버터플라이 밸브 설계의 우수성 검증)

  • Lee, Dong-Hun;Kim, Duck-Eun;Kim, Soo-Young;Park, Gy-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.611-618
    • /
    • 2006
  • Recently, cryogenic butterfly valves for LNG carriers are actively developed by ship equipment companies. The dual core structure unlike usual butterfly valve has both translation and gyration motions of the disk of the valve assembly. Especially, the ship equipment companies can not have overcome 2D design method; in addition, even though 2 years of development has passed, the drawing cannot be secured. In this research, for the cryogenic butterfly valves and the product design, 3D design method was introduced and DMU(Digital Mockup) was applied to complement the problems in 2D design and investigate application possibility of 3D design method.

Seat Tightness of Flexible Metal Seal of Butterfly Valve at Cryogenic Temperatures (초저온 버터플라이 밸브용 탄성 메탈실의 누설방지에 관한 연구)

  • Ahn, Jun-Tae;Lee, Kyung-Chul;Lee, Yong-Bum;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.643-649
    • /
    • 2011
  • For the development of butterfly valves used in liquefied natural gas (LNG) vessels, the seat tightness is one of the important factors to be taken into account in the valve-design process. An O-ring-type metal seal with a retaining ring showing good seat tightness at cryogenic temperatures has been widely used, despite the high manufacturing costs involved. As an alternative, a flexible solid metal seal offers not only sufficient tightness of the butterfly valve, meeting specification requirements, but also relatively low manufacturing costs. In this study, a design criterion to ensure the seat tightness of the butterfly valve using the flexible solid metal seal is proposed. The contact pressure can be calculated by the simulation of the frictional contact behavior between the surface of the metal seal and the valve disc. The geometry of the flexible solid metal seal is determined so that it satisfies the design criterion for sufficient seat tightness, and is verified by experiments according to BS6755 and BS6364.

Fluid-Structural Analysis of Circumference Pressurization type Butterfly Valve according to Pressurization Distance (원주가압형 극저온 버터플라이 밸브의 가압 길이에 따른 유동-구조 연성해석)

  • Kwak, Ki-Suk;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.415-416
    • /
    • 2010
  • Recently, development and using a range of natural gas is widening because anxiety of oil supply is increasing. Especially, around the world, development for Storage and transportation of natural gas is rapidly growing. On the other hand, in Korea because of technology loss for cryogenic part material, key component is rely on import. LNG and LPG are the future core of natural fuels. That are getting a lot of support and it have increased the frequency of use. So it should be associated with the development of technology. And key technology about design and manufacturing for cryogenic butterfly valve are secured. In this paper, we analyze the strength evaluation for circumference pressurization type cryogenic butterfly valve using the fluid-structure analysis.

  • PDF