• 제목/요약/키워드: Cryogenic Machining

검색결과 27건 처리시간 0.023초

티타늄 합금 소재 저속 영역 극저온 가공 특성 연구 (Study on Characteristics of Cryogenic Machining Process of Titanium Alloy at a Low Cutting Speed)

  • 김도영;김동민;박형욱
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.237-241
    • /
    • 2017
  • Cryogenic machining uses liquid nitrogen (LN2) as a coolant. This machining process can reduce the cutting temperature and increase tool life. Titanium alloys have been widely used in the aerospace and automobile industries because of their high strength-to-weight ratio. However, they are difficult to machine because of their poor thermal properties, which reduce tool life. In this study, we applied cryogenic machining to titanium alloys. Orthogonal cutting experiments were performed at a low cutting speed (1.2 - 2.1 m/min) in three cooling conditions: dry, cryogenic, and cryogenic plus heat. Cutting force and friction coefficients were observed to evaluate the machining characteristics for each cooling condition. For the cryogenic condition, cutting force and friction coefficients increased, but decreased for the cryogenic plus heat condition.

Lubrication Effect of Liquid Nitrogen in Cryogenic Machining Friction on the Tool-chip Interface

  • Jun Seong-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.936-946
    • /
    • 2005
  • The liquid nitrogen as an environmentally safe coolant has been widely recognized in cryo­genic machining, its function as a lubricant is plausible due to its chemical inertness, physical volatility and low viscosity. Since a reduced friction is a direct witness of the lubrication effect from a tribological viewpoint, this paper presents an evaluation of the apparent friction coefficient on the tool-chip interface in cryogenic cutting operations to prove and characterize the lubricity of LN2 in cryogenic machining. The cryogenic cutting technology used in this study is based on a cooling approach and liquid nitrogen delivery system which are intended to apply liquid nitrogen in well-controlled fine jets to selectively localized cutting zones and to penetrate liquid nitrogen to the tool-chip interface. It has been found that the apparent friction coefficient can be significantly reduced in cryogenic machining, depending on the approach of liquid nitrogen delivery.

초 냉각 가공에서의 LN2 의 감찰 효과 연구 -물리적 현상에 의한 마찰 계수- (Investigation of LN2 Lubrication Effect in Cryogenic Machining -Part 1: Friction Coefficient related to cutting force component with Physical Evidences-)

  • Seong-Chan, Jun;Woo-Cheol Jeong
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2002년도 춘계학술대회
    • /
    • pp.207-214
    • /
    • 2002
  • This paper presents some physical evidences indicating that reduced friction occurs in an cryogenic machining process, in which LN2 is applied selectively in well-controlled jets to the selected cutting zone. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.

  • PDF

Liquid Nitrogend의 감찰효과 -물리적 현상에 의한 절삭력- (The Lubrication Effect of Liquid Nitrogen in Cryogenic Machining [I]- Part 1: Cutting Force Component with Physical Evidences -)

  • Jun Seong Chan;Jeong Woo Cheol
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.209-221
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. In machining tests, cryogenic machining reduced the force component in the feed direction, indicating that the chip slides on the tool rake face with lower friction. This study also found that the effectiveness of LN2 lubrication depends on the approach how LN2 is applied regarding cutting forces related.

극저온 가스와 MQL(minimum quantity lubrication)의 복합 분사를 위한 하이브리드 노즐 설계에 관한 전산유체역학 해석 (Analysis of computational fluid dynamics on design of nozzle for integrated cryogenic gas and MQL(minimum quantity lubrication))

  • 송기혁;신봉철;윤길상;하석재
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.41-47
    • /
    • 2019
  • In conventional machining, the use of cutting fluid is essential to reduce cutting heat and to improve machining quality. However, to increase the performance of cutting fluids, various chemical components have been added. However, these chemical components during machining have a negative impact on the health of workers and cutting environment. In current machining, environment-friendly machining is conducted using MQL (minimum quantity lubrication) or cryogenic air spraying to minimize the harmful effects. In this study, the injection nozzle that can combined injecting minimum quantity lubrication(MQL) and cryogenic gas was designed and the shape optimization was performed by using computational fluid dynamics(CFD) and design of experiment(DOE). Performance verification was performed for the designed nozzle. The diameter of the sprayed fluid at a distance of 30 mm from the nozzle was analyzed to be 21 mm. It was also analyzed to lower the aerosol temperature to about 260~270K.

액화질소를 이용한 고정도 하드 터닝 (Precision Hard Turning with Cryogenic Cooling)

  • 박영우;김기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1048-1051
    • /
    • 2001
  • This paper presents an analytical and experimental study of a cryogenic machining for precision hard turning. A cryogenic circulation system is designed and mounted on the top of the tool insert. The machining process used is facing operation on a CNC turning center with dry and cryogenic conditions. The tool temperature and cutting forces are measured by the K-type thermocouple and by a three-component Kistler dynamometer, respectively. Both data are fed into the data acquisition program through an A/D card. Surface roughness and form accuracy of the machined surface are measured by WYKO NT2000. It is also found that surface roughness and form accuracy with cryogenic cooling are better than those with no coolant.

  • PDF

초 냉각 가공에서의 LN2 의 감찰 효과 연구 -절삭 칩 미세 구조에 관한 나이트로젠 감찰- (Investigation of LN2 Lubrication Effect in Cryogenic Machining -Part 3: Nitrogen Lubrication Mechanism related to Chip Microstructures-)

  • 전성찬;정우철
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2002년도 춘계학술대회
    • /
    • pp.221-225
    • /
    • 2002
  • Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. This paper presents lubrication mechanism related to chip microstructure. The friction reduction was further reflected In larger shear angle and less secondary deformation in the chip microstructures.

  • PDF

액체질소 분사 안정화를 통한 극저온가공 품질 향상 (Improvement of the Quality of Cryogenic Machining by Stabilization of Liquid Nitrogen Jet Pressure)

  • 강명구;민병권;김태곤;이석우
    • 한국정밀공학회지
    • /
    • 제34권4호
    • /
    • pp.247-251
    • /
    • 2017
  • Titanium alloy has been widely used in the aerospace industry because of its high strength and good corrosion resistance. During cutting, the low thermal conductivity and high chemical reactivity of titanium generate a high cutting temperature and accelerates tool wear. To improve cutting tool life, cryogenic machining by using a liquid nitrogen (LN2) jet is suggested. In cryogenic jet cooling, evaporation of LN2 in the tank and transfer tube could cause pressure fluctuation and change the cooling rate. In this work, cooling uniformity is investigated in terms of liquid nitrogen jet pressure in cryogenic jet cooling during titanium alloy turning. Fluctuation of jet spraying pressure causes tool temperature to fluctuate. It is possible to suppress the fluctuation of the jet pressure and improve cooling by using a phase separator. Measuring tool temperature shows that consistent LN2 jet pressure improves cryogenic cooling uniformity.

액화질소를 이용한 오픈 셀 실리콘 폼의 냉동 절삭조건 최적화 (Cryogenic Machining of Open-Cell Silicone Foam)

  • 황지홍;조광희;박민수
    • 한국생산제조학회지
    • /
    • 제23권1호
    • /
    • pp.32-37
    • /
    • 2014
  • Open-cell silicon foam is difficult to cut using conventional machining processes because of its low stiffness. That is, open-cell silicon foam is easily pressed down when the tool is engaged, which makes it difficult to remove the material in the form of chip. This study proposes an advanced method of machining open-cell silicon foam by freezing the material using liquid nitrogen. Furthermore, the machining conditions are optimized to maximize the efficiency of material removal and minimize the usage of liquid nitrogen by conducting experiments under various machining conditions. The results show that open-cell silicone foam products with free surface can be successfully machined by employing the proposed method.

공구와 칩 사이에서의 Liquid Nitrogen의 마찰 효과 (Friction on the Tool-chip Interface Under Liquid Nitrogen Cooling)

  • Jun Seong Chan
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.237-249
    • /
    • 2002
  • A cutting fluid can improve machining quality and tool life by maintaining the tool toughness and by providing a lubrication effect to reduce the friction between the chip and tool interface. Although liquid nitrogen as an environmentally safe coolant has been widely recognized in cryogenic machining, its function as a lubricant is plausible due to its chemical inertness, physical volatility and low viscosity. Since a reduced friction is a direct witness of the lubrication effect from a tribological viewpoint, this paper presents an evaluation of the apparent friction coefficient on the tool-chip interface in cryogenic cutting operations to prove and characterize the lubricity of LN2 in cryogenic machining. The mathematical approaches have been formulated to derive the normal and frictional forces on the tool-chip interface for the oblique cutting tests.