• Title/Summary/Keyword: Crustal structure

Search Result 92, Processing Time 0.035 seconds

Crustal Structure under the Taejon(TJN) Station by Receiver Function Methods

  • Yu, Hyeon-Je;Lee, Gi-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.35-46
    • /
    • 2001
  • 한반도 중부에 위치한 대전 지진관측소(TJN) 하부의 세부 지각구조를 밝혀내기 위하여 수신함수를 이용한 선형화된 역산(linearized inversion) 방법을 적용하였다. 본 방법의 비단일해(nonuniqueness)와 초기 모델 의존성의 문제를 해결하기 위해 근사 초기 속도 모델로부터 72개의 서로 다른 초기 모델을 구하여 역산을 수행한 후 결과모델들의 평균 속도 모델을 제시하는 방법을 사용하였다. 역산 결과 총 72개의 모델 중 뚜렷한 지각-맨틀 경계를 보이는 43개의 모델만이 조건에 만족하는 결과를 나타내었다. 모든 모델에서 속도 구조는 전체적으로 깊이에 따라 속도의 불연속면이나 급격한 증가없이 연속적인 변화를 하며, 모호면의 깊이는 30~32.5 km의 범위로 나타났다. 평균적인 하부 지각의 속도는 6.5 km/s, 상부 맨틀의 속도는 7.8 km/s로 뚜렷한 속도 변화를 보였다. 결과 모델 군은 중부지각(mid-crust)에서의 속도를 기준으로 약한 저속도층을 나타내는 군과 상대적으로 일정한 속도를 가지는 군으로 구분되었다. 단지 지진파형의 비교만으로 두 모델군 중 합당한 모델군의 선택은 불가능하였다. 따라서 수신 함수를 이용하여 연구 지역의 신뢰할 만한 지각 구조를 구하기 위해서는 그 지역에 대한 지질학적, 지구물리학적 추가정보와의 동반 해석이 요구된다.

  • PDF

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

A new method for determining OBS positions for crustal structure studies, using airgun shots and precise bathymetric data (지각구조 연구에서 에어건 발파와 정밀 수심 자료를 이용한 OBS 위치 결정의 새로운 방법)

  • Oshida, Atsushi;Kubota, Ryuji;Nishiyama, Eiichiro;Ando, Jun;Kasahara, Junzo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.15-25
    • /
    • 2008
  • Ocean-bottom seismometer (OBS) positions are one of the key parameters in an OBS-airgun seismic survey for crustal structure study. To improve the quality of these parameters, we have developed a new method of determining OBS positions, using airgun shot data and bathymetric data in addition to available distance measurements by acoustic transponders. The traveltimes of direct water waves emitted by airgun shots and recorded by OBSs are used as important information for determining OBS locations, in cases where there are few acoustic transponder data (<3 sites). The new method consists of two steps. A global search is performed as the first step, to find nodes of the bathymetric grid that are the closest to explaining the observed direct water-wave traveltimes from airgun shots, and acoustic ranging using a transponder system. The use of precise 2D bathymetric data is most important if the bottom topography near the OBS is extremely rough. The locations of the nodes obtained by the first step are used as initial values for the second step, to avoid falling into local convergence minima. In the second step, a non-linear inverse method is executed. If the OBS internal clock shows large drift, a secondary correction for the OBS internal clock is obtained, as well as the OBS location, as final results by this method. We discuss the error and the influence of each measurement used in the determination of OBS location.

A study on the crustal structure of the continental margin in the East Sea along the Korea Peninsula using potential data (포텐셜자료를 이용한 한반도 동해 대륙주변부의 지각구조에 관한 연구)

  • Kim, Chang-Hwan;Yoo, Lee-Sun;Park, Chan-Hong;Suk, Dong-Woo
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2007
  • We investigated the undulation of Moho depth and the crustal structure of the continental margin in the East Sea along the Korea Peninsula from inversion and modelling using potential data and previous seismic results. Free-air gravity anomalies generally reflect topography effect. Bouguer gravity anomalies increase toward the Ulleung Basin, indicating that Moho depth is shallower under the Ulleung Basin. Positive magnetic anomalies exist along the continental margin and decrease toward the Ulleung Basin. In analytic signal, the small anomaly in the Hupo Bank infers that the Hupo Bank is uplifted by igneous intrusion and the strong anomaly on the continental slope denotes existence of SDR(seaward dipping reflectors), which are in accordance with the location of SDR detected in previous seismic studies. The inversion result of Bouguer gravity anomaly and the 2-dimensional gravity modelling indicate that the undulation of Moho depth shallows from the continental shelf toward the Ulleung Basin. This is in good agreement with the Moho depth calculated by the previous seismic velocity model using ocean bottom seismometer(OBS). The 2-dimensional gravity modelling infers magmatic underplating zone under the lower continental crust on the continental margin of the East Sea, indicating the possible rifiting of the continental margin.

  • PDF

Traveltime estimation of first arrivals and later phases using the modified graph method for a crustal structure analysis (지각구조 해석을 위한 수정 그래프법을 이용한 초동 및 후기 시간대 위상의 주시 추정)

  • Kubota, Ryuji;Nishiyama, Eiichiro;Murase, Kei;Kasahara, Junzo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.105-113
    • /
    • 2009
  • The interpretation of observed waveform characteristics identified in refraction and wide-angle reflection data increases confidence in the crustal structure model obtained. When calculating traveltimes and raypaths, wavefront methods on a regular grid based on graph theory are robust even with complicated structures, but basically compute only first arrivals. In this paper, we develop new algorithms to compute traveltimes and raypaths not only for first arrivals, but also for fast and later reflection arrivals, later refraction arrivals, and converted waves between P and S, using the modified wavefront method based on slowness network nodes mapped on a multi-layer model. Using the new algorithm, we can interpret reflected arrivals, Pg-later arrivals, strong arrivals appearing behind Pn, triplicated Moho reflected arrivals (PmP) to obtain the shape of the Moho, and phases involving conversion between P and S. Using two models of an ocean-continent transition zone and an oceanic ridge or seamount, we show the usefulness of this algorithm, which is confirmed by synthetic seismograms using the 2D Finite Difference Method (2D-FDM). Characteristics of arrivals and raypaths of the two models differ from each other in that using only first-arrival traveltime data for crustal structure analysis involves risk of erroneous interpretation in the ocean-continent transition zone, or the region around a ridge or seamount.

Determination of Lateral Variations for Pn Velocity Structure Beneath the Korean Peninsula Using Seismic Tomography (지진토모그래피 (Seismic Tomography) 방법을 이용한 한반도 하부 Pn 속도 구조의 수평분포 결정)

  • Kim, So Gu;Lee, Seoung Kyu
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.625-635
    • /
    • 1997
  • A back projection algorithm is applied to 216 Pn travel time measurements to image lateral variations of compressional velocity in the uppermost mantle in the Korean Peninsula. We obtained an average P-velocity value for the uppermost mantle of $7.90{\pm}0.18km/sec$, and an average mantle P-velocity gradient of $5.3{\times}10^{-3}s^{-1}$ for the Korean Peninsula. The final 3-D velocity image in the uppermost mantle is characterized by a low-velocity (about $7.77{\pm}0.12km/sec$) region in the southeast area of the Korean peninsula, which is called 'Kyongsang Basin' and by high-velocity(${\geq}8.08km/sec$) region in the northern area of the Korean Peninsula(Hamkyong and Pyongan provinces). The crustal thicknesses are calculated for the 10 subregions. The crustal thickness of the northern part(${\geq}39^{\circ}N$) of the Korean Peninsula is 33.0-36.0 km, on the contrary, that of the southern part(< $39^{\circ}N$) is 30.7~33.7 km. The velocity image obtained in this study is somewhat consistent with previous S-P travel time studies and gravity studies.

  • PDF

Structural Implications of Gravity Anomalies around Dok Island and its Surrounding Seamounts in the East Sea (독도 및 그 주변 해산 중력 이상의 지구조적 해석)

  • 김원균;김창환;박찬홍;한현철;권문상;민경덕;김백수;최영섭
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.537-545
    • /
    • 2000
  • Shipborne gravity data are analyzed to investigate crustal structure under Dok Island and its surrounding seamounts located in border of Ulleung Basin and Oki Bank in the East Sea. Relatively low free-air gravity anomaly compared with the volume of seamounts may be explainable by isostatic compensation. From 1 st to 3rd Dokdo Seamounts, the decrease of free-air and Bouguer gravity anomalies implies the different degree of isostatic compensation, crustal thickness or/and density contrast. 3-D gravity modelling shows that seamounts have the mirror roots for regional Airy isostatic compensation, and from Ulleung Basin to Oki Bank, Moho discontinuity deepens and the density of crust is decreases. The results infer that study area is transitional zone from thin oceanic to thick continental crust. The depth of Moho discontinuity is about 15∼16 km, which may be interpreted as an uplifting of Mantle to shallow depth comparing with other borders of the Ulleung Basin.

  • PDF

The high accurate monitoring technique of land deformation by using satellite image - PSInSAR -

  • Mizuno Toshimi;Kuzuoka Shigeki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.305-312
    • /
    • 2003
  • Remote sensing can provide invisible information in addition to acquire wide-view image data from space. Synthetic Aperture Radar (SAR) transmits microwave to the earth from a satellite and collects the reflected echo from the surface. Interferometric processing of SAR data can detect the subtle land deformation. The information of the surface movement by SAR is useful to monitor the volcanic activity, extended subsidence of urbanized area and the prediction of the earthquake caused by crustal deformation, and it complements the conventional levelling and GPS technique. PSInSAR (Permanent Scatterers Interferometric SAR) is one of interferometric techniques to be applied to practical projects in Japan. In this paper, the projects of land deformation monitoring are shown after the explanations of the PSInSAR principle. Tokai earthquake risk assessment is the first example. PSInSAR detects the subduction of crustal deformation of the adjacent area of new assumed epicenter region of the Tokai Earthquake. The extended subsidence of the urbanized area was implemented by using Japanese satellite data i.e. JERS that has so much data the surrounding of Japan as the archive. We examine the relationship between the geological structure and settlement at Nohbi basin including Nagoya city.

  • PDF