• 제목/요약/키워드: Crushing effect

검색결과 141건 처리시간 0.026초

Buckling Behavior of Corrugated Steel Pipe under External Uniform Pressure (등분포하중을 받는 파형강관의 좌굴거동)

  • Ahn, Woo Cheul;Han, Taek Hee;Lim, Nam Hyoung;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • 제15권1호
    • /
    • pp.33-40
    • /
    • 2003
  • There are two basic concepts about concerning the buckling analysis of a buried pipe. One concept considers the soil around the pipe asn elastic continuum mediaum. The other concept holds that the pipe is sup ported by an elastic spring, which replaces the effects of the surrounding soil (the Winkler model). Theise buckling analysis is based on plane analysis, without considering the corrugation effect and the length effect. This paper thus presents a parametric study using the Finite Element Method (FEM) for the Winker model and proposes a buckling strength formula after examining a 3D analysis considering the corrugation effect and the length effect, thatwhichhelp in estimating the critical buckling strength of such CSP

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Effect of the Degree of Weathering on the Distribution of Aggregate Particle Size and the Generation of Fine Rock Particles during Crushing of Granite (화강암 파쇄시 풍화정도가 골재 입도분포 및 미석분 발생에 미치는 영향)

  • You, Byoung-Woon;Lee, Jin-Young;Lee, Dong-kil;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • 제55권5호
    • /
    • pp.429-438
    • /
    • 2022
  • This study evaluated the effect of the degree of weathering on the particle size distribution and the amount of fine particles generated in the aggregate production process during the crushing of igneous rock. Rock samples were collected from three areas with differences in strength from the Schmith hammer measurement at the aggregate quarry in Geochang, Gyeongsangbuk-do. After crushing with a jaw crusher under the same conditions in laboratory, particle size analysis, mineral analysis, chemical analysis, and weathering index were calculated. The Schmidt hammer measurements were 56, 28, and <10, and the CIA and CIW values of weathering index were also different, so the rock samples were classified into hard rock, soft rock, and weathered rock according to the weathering degree. It shows a smaller particle size distribution toward weathered rocks under the microscope, and the proportion of altered clay minerals such as sericite increased. The composition of feldspar and quartz was high for hard rock, and the ratio of muscovite and kaolinite was low. As a result of the crushing of the jaw crusher, hard rock produced a lot of coarse crushed material (13.2mm), while soft rock and weathered rock produced fine crushed material (4.75mm). The former showed the characteristics of the beta distribution curve, and the latter showed the bimodal distribution curve. The production of fine rock particles (based on 0.71mm of sieve, wt. %) increased to 13%<21%<22% in hard rock, soft rock, and weathered rock, and the greater the degree of weathering, the more fine rock particles were generated. The fine particles are recovered by the operation of the sand unit in the wet aggregate production process. Therefore, in order to minimize the amount of sludge generated in the aggregate production process, it was judged that a study on the optimal operation of cyclones could be necessary.

Strength and behaviour of reinforced SCC wall panels in one-way action

  • Ganesan, N.;Indiraa, P.V.;Prasad, S. Rajendra
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.1-18
    • /
    • 2010
  • A total of 28 wall panels were cast and tested under uniformly distributed axial load in one-way in-plane action to study the effect of slenderness ratio (SR) and aspect ratio (AR) on the ultimate load. Two concrete formulations, normal concrete (NC) and self compacting concrete (SCC), were used for the casting of wall panels. Out of 28 wall panels, 12 were made of NC and the remaining 16 panels were of SCC. All the 12 NC panels and 12 out of 16 SCC panels were used to study the influence of SR and the remaining 4 SCC panels were tested to study the effect of AR on the ultimate load. A brief review of studies available in literature on the strength and behaviour of reinforced concrete (RC) wall panels is presented. Load-deformation response was recorded and analyzed. The ultimate load of SCC wall panels decreases non-linearly with the increase in SR and decreases linearly with increasing values of AR. Based on this study a method is proposed to predict the ultimate load of reinforced SCC wall panels. The modified method includes the effect of SR, AR and concrete strength.

Engineering Properties of Mylonite in the Youngju Area (영주지역 압쇄암의 공학적 특성 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Yang, Tae-Sun;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • 제27권10호
    • /
    • pp.35-43
    • /
    • 2011
  • The area to be studied is the place where the main line rail way will be constructed in accordance with the scheduled construction project of Yeongju dam, and is a fold and mylonite zone over several km that is formed by ductile-shearing effect. The ductile shear zone, which has been transformed by faulting for long geological time, shows a complicated geological structure. Due to the recrystallization of mineral caused by transformation in deep underground (>8km), a mylonite zone with lamellar structure has properties distinguished from other fault zones formed by transformation near earth surface <2km). To see the properties of mylonite, this study analyzed the transformation rate of sample rocks and the shape of constriction structure accompanied with transformation. While the transformation of fault zone shows a round oblate, the mylonite zone shows a prolate form. Transformation rate in fault zone was measured to be less than 1.2 compared to the state before transformation while the measured rate in mylonite zone was 2.5 at most. Setting the surface of discontinuity as the base, the unconfined compressive strength of slickenside can be categorized in sedimentary rocks, and a change of strength was observed after water soaking over certain time. Taking into account that the weathering resistance of the rock based on mineral and chemical organization is relatively higher, its engineering properties seems to result from the shattered crack structure by crushing effect. When undertaking tunnel construction in mylonite zone, there should be a special care for the expansion of shattered cracks or the fall of strength by influx of ground water.

Effect of Hammer Material on Crushing of Silica (함마의 재질이 규석의 분쇄에 미치는 영향)

  • Lee, Jae-Jang;Chang, Sang-Geun;Chang, Kwang-Teak;Park, Jong-Ryok
    • Journal of Industrial Technology
    • /
    • 제22권A호
    • /
    • pp.119-125
    • /
    • 2002
  • In Kwangjin industrial company, mill is operating for the foundry sand production at the rate of 25t/hr from quartzite. Foundry sands fall into four distinct categories: silica sand, lake sand, bank sand, and natural molding sand. Silica sand is a general term used to describe crushed, washed, graded, dried, and cooled clay-free sands. This study was conducted for the investigation of the foundry sand productivity and the life span of the hammer according to the material quality. The life time of hammer from several manufacturer were compared in order to find out the grinding efficiency of the various hammer material. In the result of tests, the life time of high-Mn hammer was 10.5 hours while that of high-Cr was 19.5 hours. The life time in case of typical worn shape hammers was about 12 hours and the average time of a blowhole hammer was about 6.5 hours.

  • PDF

Development of PZT Piezoelectric Biosensor for the Detection of Formaldehyde (Formaldehyde 측정을 위한 PZT 압전 바이오센서 개발)

  • 김병옥;곽성곤;임동준
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.477-482
    • /
    • 1998
  • A biosensor with PZT piezoelectric ceramic crystal was developed for the detection of formaldehyde gas. Poled PZT piezoelectric ceramic disk was made from ZrO2, TiO2 and Nb2O5, together with the addition of PbO and polyvinyl alcohol, through various processes of mixing, calcination drying, crushing, forming, sintering, polishing, ion coating and poling. Oscillator circuit of sensor was made of operational amplifier(AD811AN). Formaldehyde dehydrogenase was immobilized onto a piezoelectic ceramic crystal, together with the cofactors, reduced glutathione and nicotinamide adenine dinucleotide. The effect of flow rate on the sensitivity was determined by varing the flow rate of carrier gas from 24.7mL/min to 111.7mL/min through detector cell. The results indicated that as the flow rate was increased, the recovery rate was increased. And a significant increase in the sensitivity was observed in enhanced flow rate of carrier gas. Frequency difference(ΔF) of immobilized PZT piezoelectic disk increased proportionally to the concentration gas and reproduced to repeated exposures of formaldehyde gas(28ppm, Δ68Hz).

  • PDF

Experimental Study of Structural Capacity Evaluation of RC T-shape Walls with the Confinement Effect (단부구속 효과에 따른 철근콘크리트 T형 벽체의 구조성능 평가에 관한 실험적 연구)

  • 하상수;윤현도;최창식;오영훈;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.191-196
    • /
    • 2001
  • The structural performance of a shear wall subjected to lateral loads is influenced by many factors, such as sectional shape, aspect ratio, vertical and horizontal reinforcement, lateral confinement and axial compression, etc. This experimental research is focusing to investigate the structural performance of T-shaped walls with different confining reinforcement. Experimental results show that all specimens finally failed by the crushing of the concrete in the compression zone. Although the location and content of the lateral confinement is different, the results are very similar during the negative loading direction where the flange is compressed. However, when flange is subjected to tension, the location and content of the lateral confinement results in a large difference in the structural performance of T-shaped walls. Therefore, selection of location and content of the lateral confinement would be important aspect in the design of the nonsymmetric structural walls.

  • PDF

A reinforced concrete frame element with shear effect

  • Valipour, Hamid R.;Foster, Stephen J.
    • Structural Engineering and Mechanics
    • /
    • 제36권1호
    • /
    • pp.57-78
    • /
    • 2010
  • A novel flexibility-based 1D element that captures the material nonlinearity and second order P-$\Delta$ effects within a reinforced concrete frame member is developed. The formulation is developed for 2D planar frames in the modified fiber element framework but can readily be extended to 3D cases. The nonlinear behavior of concrete including cracking and crushing is taken into account through a modified hypo-elastic model. A parabolic and a constant shear stress distribution are used at section level to couple the normal and tangential tractions at material level. The lack of objectivity due to softening of concrete is addressed and objectivity of the response at the material level is attained by using a technique derived from the crack band approach. Finally the efficiency and accuracy of the formulation is compared with experimental results and is demonstrated by some numerical examples.

Thermoelectric Properties of PbTe Sintered Body Fabricated by Mechanical Alloying Process (기계적합금화 공정에 의해 제조된 PbTe 소결체의 열전특성)

  • 이길근;정해용;이병우
    • Journal of Powder Materials
    • /
    • 제8권2호
    • /
    • pp.110-116
    • /
    • 2001
  • Abstract To investigate the effect of mechanical alloying process to thermoelectric properties of PbTe sintered body, Pb-Te mixed powder with Pb : Te : 1 : 1 composition was mechanically alloyed using tumbler-ball mill. Thermoelectric properties of the sintered body were evaluated by measuring of the Seebeck coefficient and specific electric resistivity from the room temperature to 50$0^{\circ}C$. Sintered body of only mechanically alloyed PbTe powder showed p-type behavior at the room temperature, and occurred type transition from p-type to n-type at about 30$0^{\circ}C$. PbTe sintered body which was fabricated using heat treated powder in $H_2$ atmosphere after mechanical alloying showed stable n-type behavior under 50$0^{\circ}C$. N-type PbTe sintered body fabricated by mechanical alloying process had 4 times higher power factor than that fabricated by the melt-crushing process. Application of a mechanical alloying process to fabricate of n-type PbTe thermoelectric material seemed to be useful to increase the power factor of PbTe sintered body.

  • PDF