• Title/Summary/Keyword: Crushed

Search Result 1,093, Processing Time 0.02 seconds

A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process (Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구)

  • Sung-Ho Joo;Dong Ju Shin;Dongseok Lee;Shun Myung Shin
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.42-49
    • /
    • 2023
  • The glass ceramic secondary resource containing Li-Al-Si is used in inductor, fireproof glass, and transparent cookware and accounts for 14% of the total consumption of Li, which is the second most widely used after Li-ion batteries. Therefore, new Li resources should be explored when the demand for Li is exploding, and extensive research on Li recovery is needed. Herein, we recovered Li from fireproof Li-Al-Si glass ceramic, which is a new secondary resource containing Li. The fireproof glass among all Li-Al-Si glass ceramics was used as raw material that contained 1.5% Li, 9.4% Al, and 28.9% Si. The process for recovering Li from the fireproof glass was divided into two parts: (1) calcium salt roasting and (2) water leaching. In calcium salt roasting, a sample of fireproof glass was crushed and ground below 325 mesh. The leaching efficiency was compared based on the presence or absence of heat treatment of the fireproof glass. Moreover, the leaching rates based on the input ratios of calcium salt, Li-Al-Si glass, and ceramics and the leaching process based on calcium salt roasting temperatures were compared. In water leaching, the leaching and recovery rates of Li based on different temperatures, times, solid-liquid ratios, and number of continuous leaching stages were compared. The results revealed that fireproof glass ceramics containing Li-Al-Si should be heat treated to change phase to beta-type spodumene. CaCO3 salt should be added at a ratio of 6:1 with glass ceramics containing Li-Al-Si, and then leached 4 times or more to achieve a recovery efficiency of Li over 98% from a solution containing 200 mg/L of Li.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.