• 제목/요약/키워드: Crush Energy

검색결과 73건 처리시간 0.023초

모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(II) (A Study on the Collapse Characteristics of Hat-shaped Members with Spot Welding under Axial Compression(II))

  • 차천석;양인영
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.195-201
    • /
    • 2000
  • The fundamental spot welded sections of automobiles (hat-shaped and double hat-shaped sections) absorb most of the energy in a front impact collision. The sections of various thickness, shape and weld width on the flange lave been tested on axial impact crush load (Mass 40kg, Velocity 7.19m/sec) using a vertical air pressure crash est device Characteristics of impact collapse have been reviewed and a structure of optimal energy absorbing capacity is suggested.

  • PDF

알루미늄 차체의 사이드멤버 충돌에너지 흡수성능 최적설계 (The Crush Energy Absorption Capacity Optimization for the Side-Member of an Aluminum Space Frame Vehicle)

  • 김정호;김범진;허승진;김민수
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the frontal crash performance of an Aluminum Space Frame Vehicle, this presents a systematic optimal design process to maximize the crush energy absorption capacity of side-members while satisfying the maximum displacement constraint. In this study, five design types are studied for selecting a good collapse initiator. Then, for the selected collapse initiator type, 7 design variables are defined to represent cross section shape, thickness and bead interval. The systematic optimization processor, R-INOPL uses DOE, RSM and numerical optimization techniques. R-INOPL uses only 14 analyses to solve the 7 design variable optimization problem the final design can improve 103.9% of the internal energy and reduce 13.9% of the maximum displacement.

분열 프랙탈을 이용한 다짐 에너지의 영향 분석 - 입도, 다짐도 및 투수특성을 중심으로 - (Analysis of Effect of Compaction Energy on Characters of Grain Size Distribution, Compaction and Permeability Using Fragmentation Fractal)

  • 노수각;손영환;장병욱;김성필
    • 한국농공학회논문집
    • /
    • 제48권6호
    • /
    • pp.59-67
    • /
    • 2006
  • Particles of soil are crushed when soil is compacted in the in-situ or lab. Among many factors that affect the crush of particles, compaction energy is a major factor. Because the crush of particles can change physical properties, the analysis of effect of compaction energy is very important. In this study, the fragmentation fractals were used for determining the change in grain size distribution and the effect due to change in grain size distribution was estimated. Compaction energy was increased by 50, 100, 200 and 300% based on the energy of standard A compaction test. As a result, grain size distribution curves were changed and fine particles increased as compaction energy were increased. Relative compaction were ranged between $93.38{\sim}107.67$. Fractal dimension of each site increased as compaction energy increased. Relative compaction is proportional to the fractal dimension but coefficients of permeability were in inverse proportional to the involution of fractal dimension.

Alternative Breaching Methods of the TRISO Fuels

  • Lee Jong-Hyeon;Shim Joon-Bo;Ahn Byung-Gil;Kwon Sang-Woon;Kim Eung-Ho;Yoo Jae-Hyung;Park Seong-Won
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 Proceedings of The 6th korea-china joint workshop on nuclear waste management
    • /
    • pp.92-106
    • /
    • 2005
  • The head-end processes of spent TRISO fuel have been reviewed to understand the current status and the limitations of the reported processes. The main concerns in the TRISO treatment are to effectively breach and separate the carbon and SiC layers composing the TRISO particles. The crush-bum scheme which was considered in the early stages of the development has been replaced by the crush-leach or $CO_2$ burning and the succeeding CO decomposition process because of a sequestration problem of $CO_2$ containing $^{14}C$. However there are still many obstacles to overcome in the reported processes. Hence, innovative thermomechanical and pyrochemical concepts to breach the coating layers of the TRISO particle with a minimized amount of second waste are proposed in this paper and their principles are described in detail.

  • PDF

축 압궤하중을 받는 Gr/E 복합재 튜브의 에너지 흡수특성 (The Absorbed Energy Characteristics of Gr/E Composite Tubes under Axial Collapse Load)

  • 양현수;김영남;최흥환
    • 대한안전경영과학회지
    • /
    • 제4권2호
    • /
    • pp.189-197
    • /
    • 2002
  • Composites have wide applications in aerospace vehicles and automobiles because of the inherent flexibility in their design lot improved material properties. Composite tubes in particular, are potential candidates for their use as energy absorbing elements in crashworthiness applications due to their high specific energy absorbing capacity and the stroke efficiency. Their failure mechanism however is highly complicated and rather difficult to analyze. This includes fracture in fibers, in the matrix and in the fiber-matrix interface in tension, compression and shear. The purpose of this study is to investigate the energy absorption characteristics of Gr/E(Graphite/Epoxy) tubes on static and impact tests. The collapse characteristics and energy absorption of a variety of tubes have been examined. Changes in the lay-up which increased the modulus increased the energy absorption of the tubes. Based on the test results, the following remarks can be made: Among CA15, CA00 and CA90 curves the CA90 tube exhibits the highest crush load throughout the whole crush process, and max load increases as interlaminar number increase. Among all the tubes type CC90 has the largest specific crushing stress of 52.60 kJ/kg which is much larger than other tubes.

차체의 압괴특성에 의한 충돌 후 타고오름 거동에 관한 연구 (Study on a Override Behavior during Train Collision by Crush Characteristic of Train Carbody)

  • 김거영;구정서;박민영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.604-608
    • /
    • 2010
  • This paper proposed a new 2D multibody dynamic modeling technique to analyze overriding behavior taking place during train collision. This dynamic model is composed of nonlinear spring, damper and mass by considering the deformable characteristics of carbodies as well as energy absorbing structures and components. By solving this dynamic model of rollingstock, collision energy absorption capacity, acceleration of passenger sections, impact forces applied to interconnecting devices, and overriding displacements can be well estimated. For a case study, we choose KHST (Korean High Speed Train), obtained crush characteristic data of each carbody section from 3D finite element analysis, and established a 2D multibody dynamic model. This 2D dynamic model was suggested to describe the collision behavior of 3D Virtual Testing Model.

  • PDF

The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation

  • Zhu, Xiaohua;Liu, Weiji
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.195-204
    • /
    • 2018
  • Based on theories of rock mechanics, rock fragmentation, mechanics of elasto-plasticity, and energy dissipation etc., a method is presented for evaluating the rock fragmentation efficiency by using plastic energy dissipation ratio as an index. Using the presented method, the fragmentation efficiency of rocks with different strengths (corresponding to soft, intermediately hard and hard ones) under indentation is analyzed and compared. The theoretical and numerical simulation analyses are then combined with experimental results to systematically reveal the fragmentation mechanism of rocks under indentation of indenter. The results indicate that the fragmentation efficiency of rocks is higher when the plastic energy dissipation ratio is lower, and hence the drilling efficiency is higher. For the rocks with higher hardness and brittleness, the plastic energy dissipation ratio of the rocks at crush is lower. For rocks with lower hardness and brittleness (such as sandstone), most of the work done by the indenter to the rocks is transferred to the elastic and plastic energy of the rocks. However, most of such work is transferred to the elastic energy when the hardness and the brittleness of the rocks are higher. The plastic deformation is small and little energy is dissipated for brittle crush, and the elastic energy is mainly transferred to the kinetic energy of the rock fragment. The plastic energy ratio is proved to produce more accurate assessment on the fragmentation efficiency of rocks, and the presented method can provide a theoretical basis for the optimization of drill bit and selection of well drilling as well as for the selection of the rock fragmentation ways.

Hyperbaric oxygen therapy for the treatment of a crush injury of the hand: a case report

  • Neto, Pedro Henry;Ribeiro, Zamara Brandao;Pinho, Adriano Bastos;Almeida, Carlos Henrique Rodrigues de;Maranhao, Carlos Alberto de Albuquerque;Goncalves, Joaquim da Cunha Campos
    • Journal of Trauma and Injury
    • /
    • 제35권3호
    • /
    • pp.209-214
    • /
    • 2022
  • We describe a case of hyperbaric oxygen therapy (HBOt) as an adjunct to treatment of a crush injury to the hand. A 34-year-old male paramedic was involved in a motor vehicle accident and admitted for diagnosis and surgical treatment. He sustained a crush injury to his right hand and presented with significant muscle damage, including multiple fractures and dislocations, an avulsion injury of the flexor tendons, and amputation of the distal phalanx of the little finger. He underwent reconstructive surgery and received HBOt over the following days. In the following 2 months, he lost the distal and middle phalanges of the little finger and recovered hand function. Posttraumatic compartment syndrome responds well to HBOt, which reduces edema and contributes to angiogenesis, as well as promoting the cascade of healing events. High-energy trauma causes massive cell destruction, and the blood supply is usually not sufficient to meet the oxygen demands of viable tissues. Hyperbaric oxygenation by diffusion through interstitial and cellular fluids increases tissue oxygenation to levels sufficient for the host's responses to injury to work and helps control the delayed inflammatory reaction. HBOt used as an adjunct to surgical treatment resulted in early healing and rehabilitation, accelerating functional recovery. The results suggest that adjunctive HBOt can be beneficial for the treatment of crush injuries of the hand, resulting in better functional outcomes and helping to avoid unnecessary amputations.

TRISO 연료 대체 처리방법 개발에 관한 선행연구 (Preliminary Study on the Development of Alternative Methods for the Treatment of TRISO Fuels)

  • 이종현;심준보;안병길;권상운;김응호;유재형;박성원
    • 방사성폐기물학회지
    • /
    • 제3권3호
    • /
    • pp.201-211
    • /
    • 2005
  • 본 연구에서는 사용후 TRISO 연료 처리를 위한 보다 효과적인 공정개발을 위하여 기존 전처리 기술에 대한 검토를 수행하였다. TRISO 연료 처리에 있어서 가장 중요한 사항은 연료입자에 포함되어 있는 탄소와 SiC성분을 효과적으로 분리하는데 있다. 공정개발 초기에 고려되었던 분쇄 후 배소공정의 경우 $^{14}C$ 처리공정에서 발생되는 2차 폐기물로 인하여 분쇄 후 침출공정으로 대체 되었으나 여전히 해결해야 될 근본적인 문제점이 존재하고 있다. 따라서 본 논문에서는 TRISO 입자의 피복층 제거를 위한 새로운 개념의 열적 파쇄와 용융염 전해반응에 의한 피복층 제거 공정을 제안하였으며 각 공정에 대한 원리를 자세하게 기술하였다.

  • PDF