• Title/Summary/Keyword: Cruciferous vegetable

Search Result 28, Processing Time 0.024 seconds

Occurrence of Clubroot in Cruciferous Vegetable Crops and Races of the Pathogen in Korea

  • Cho, Weon-Dae;Kim, Wan gyu;Kenji Takahashi
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.64-68
    • /
    • 2003
  • Cruciferous vegetable crops grown in several locations in Korea were surveyed from 1996 to 2000. Clubroot severely occurred up to a maximum of 100% in Chinese cabbage fields in 15 out of 42 locations, and in cabbage fields in 5 out of 13 locations surveyed. The disease also severely occurred up to a maximum of 40% in radish fields in 6 out of 35 locations, and up to a maximum of 40% and 100% in turnip and brown mustard fields in one each out of the few locations surveyed, respectively. The disease occurred less than l% in one kale field in one out of two locations surveyed. A total of 268 isolates of Plasmodiophora brassicae was obtained from six cruciferous vegetable crops. The isolates were classified into 13 races based on their pathogenicity to the differential varieties of cabbage and rutabaga. There were 13 races found in isolates from Chinese cabbage, while 6 races each were found in isolates from cabbage and radish. There were five and three races found in turnip and brown mustard isolates, respectively. One isolate from kale was identified as race 8. Race 8 was the most frequently isolated from five cruciferous vegetable crops, except brown mustard. Races 3 and 14 were isolated only from Chinese cabbage.

lnhibitory Effect o fVarious Cruciferous Vegetable on the Growth of Human Cancer Calls (인체암세포증식에 있어 십자화과 채소의 억제효과)

  • 이선미;이숙희
    • Journal of Life Science
    • /
    • v.7 no.3
    • /
    • pp.234-240
    • /
    • 1997
  • The anticarcingenic effect of methanol extracts from such cruciferous vegetables as cabbage, red cabbage, Korean cabbage, kale, cauliflower, broccoli, radish root, leafy radish, rape leaves and shepherd’s purse on the growth of human K-562 leukemia cells, MG-63 osteosarcoma cells, HT-29 colon cancer cells and AGS gastric cancer cells were studied. All of cruciferous vegetables inhibited more than 70% of the growth of K-52 leukemia cells and more than50% fo rhe growth fo AGS gastric cancer cells. Particularly, kale, broccoli and shepherd’s purse showed inhibition rates of 93.5%, 93,5% and 96.3% on the growth of AGS gastric cancer cells, respectively. In case of HT-29 colon cancer cells, the methanol extracts of cabbage, kale and shepherd’purse exhibited 82.4%, 72.15, 79.4% and 95.6% of inhibitory effects, respectively. The cabbage, kale, cauliflower and shepherd’s purse extracts also highly suppressed the proliferation of MG-63 cells. Generally the 10 cruciferous vegetable we studied strongly decreased the growth of various human cancer cells in vitro, however, kale and shepherd’s showed the most effective vegetable among them.

  • PDF

Occurrence of Fusarium Wilt on Cruciferous Vegetable Crops and Pathogenic Differentiation of the Causal Fungus (십자화과 채소작물에서의 후사리움 시들음병 발생과 그 원인균의 병원성 분화)

  • 문윤기;김완규;조원대;성재모
    • Research in Plant Disease
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2001
  • Occurrence of Fusarium wilt was surveyed in fields of cruciferous vegetable crops in Korea from 1996 to 1998. The disease severely occurred up to 40% in fields of Chinese cabbage and radish but slightly in Fields of cabbage. A total of 123 isolates was obtained from roots of the diseased plants and identified as Fusarium oxysporum based on the morphological and cultural characteristics. Pathogenicity of nine isolates selected from the isolates was tested by artificial inoculation to the hosts. All the isolates had similar virulence on Chinese cabbage and cabbage, although there were some differences in virulence on cultivars tested among the isolates. The isolates from radish were more virulent to radish than those from Chinese cabbage and cabbage. All isolates from the crucifers were not virulent to eight species of vegetable crops except the crucifers. The results of pathogenicity tests showed that the pathotype of Chinese cabbage-infecting isolates was identical to that of cabbage-infecting isolates, but somewhat different from that of radish-infecting isolates.

  • PDF

Bioactivities of Sulfur Compounds in Cruciferous Vegetables

  • Kim Mee-Ree
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.150-157
    • /
    • 2004
  • Cruciferous vegetables are rich in organosulfur compounds such as isothiocyanates and sulfides. While the isothiocyanates, corresponding to pungent principle, are generated from myrosinase-catalyzed hydrolysis of glucosinolates, the sulfides can be generated non-enzymatically. Recent studies provide evidences that some sulfur compounds in these vegetables show a chemopreventive action against carcinogenesis; while isothiocyanates such as sulforaphane induce phase 2 enzymes (glutathione S-transferase/quinone reductase), disulfides tends to elevate the level of phase 1 and 2 enzymes. Especially, sulforaphane rich in Cruciferae vegetables has been reported to express anticarcinogenic effect in some organs such as liver, kidney or intestine. When the level of sulfur compounds in Cruciferous and Alliaceous vegetables was determined by GC/MS (SIM), the richest in sulforaphane is broccoli followed by turnip, cabbage, radish, kale, cauliflower and Chinese cabbage. Meanwhile, the sulfides are predominant in Alliaceous vegetables such as onion. In related study, the administration of vegetable extract elevated the GST level by 1.5 fold for broccoli, 1.4 fold for radish, and 1.3 for onion. Thus, the vegetables frequently used in Korean dish contain relatively high amount of anticarcinogenic sulfur compounds. Moreover, the combination of broccoli and radish extracts elevated the GST induction up to 1.84 folds of control. In addition, the Kakdugi, fermented radish Kimchi was observed to show a comparable GST induction despite the decomposition of methylthio-3-butenylisothiocyanate (MTBI). Therefore, the combination of vegetables including broccoli, and fermented radish Kimchi would be useful as a functional food for chemoprevention.

  • PDF

Studies on the Metabolism of Sinigrin in Rat (흰쥐에서 sinigrin 대사에 관한 연구)

  • Huh, Keun;Shin, Uk-Seob;Lee, Sang-Il;Song, Min-Ik
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.11-15
    • /
    • 1994
  • The detoxifying properties of cruciferous vegetables components have been the subject of several recent investigations. Evidences from many biochemical and pharmacological studies indicated that higher consumption of cruciferous vegetables is associated with lower incidence of harmful actions such as hepatotoxicity and oxidative stress in animal and human populations. Recently, it has been reported that drug metabolizing and detoxifying enzyme activities were increased by cruciferous vegetable extract in which sinigrin is known to be a main active component, accounting for about 2 to 3 percents of total extract. The detoxifying effect of sinigrin has been well reported in several literatures. The metabolism of sinigrin in animal, however, has not been reported yet. That led us to study the metabolism of sinigrin in rat. Sinigrin is nown to be metabolized into three compounds, i.e., allyl isothiocyanate, glucose and potassium phosphate in cruciferous vegetables. Allyl isothiocyanate was formed in rat hepatic mitochondrial fraction in dose and incubation time dependent manner, that was confirmed by HPLC. Glucose formation was came up with results similar to that of allyl isothiocyanate. Three hours after i.p. administration of sinigrin to rat, allyl isothiocyanate appeared in rat liver, and five hours later it was detected in liver and blood. The above results suggested that sinigrin might be metabolized into allyl isothiocyanate, glucose and potassium phosphate in rat.

  • PDF

A Synergistic Effect of Chitosan and Lactic Acid Bacteria on the Control of Cruciferous Vegetable Diseases

  • Lin, Yu-Chen;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • Two lactic acid bacteria (LAB) designated J02 and J13 were recovered from fermented vegetables based on their ability to suppress soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish. J02 and J13 were identified as Lactobacillus pentosus and Leuconostoc fallax, respectively. The ability of J02 and J13 to suppress plant diseases is highly dependent on chitosan. LAB alone has no effect and chitosan alone has only a moderate effect on disease reduction. However, J02 or J13 broth cultures plus chitosan display a strong inhibitory effect against plant pathogens and significantly reduces disease severity. LAB strains after being cultured in fish surimi (agricultural waste) and glycerol or sucrose-containing medium and mixed with chitosan, reduce three cruciferous vegetable diseases, including cabbage black spot caused by Alternaria brassicicola, black rot caused by Xanthomonas campestris pv. campestris, and soft rot caused by Pcc. Experimental trials reveal that multiple applications are more effective than a single application. In-vitro assays also reveal the J02/chitosan mixture is antagonistic against Colletotrichum higginsianum, Sclerotium rolfsii, and Fusarium oxysporum f. sp. rapae, indicating a broad-spectrum activity of LAB/chitosan. Overall, our results indicate that a synergistic combination of LAB and chitosan offers a promising approach to biocontrol.

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Sulforaphane is Superior to Glucoraphanin in Modulating Carcinogen-Metabolising Enzymes in Hep G2 Cells

  • Abdull Razis, Ahmad Faizal;Noor, Noramaliza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4235-4238
    • /
    • 2013
  • Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 ${\mu}M$) for 24 hours. Glucoraphanin at higher concentration (25 ${\mu}M$) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 ${\mu}M$. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen-metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.

Suppression of Undesirable Sulfurous Aromas of Cruciferous Vegetables with Caraway Sulfhydryl Oxidase (캐러웨이 Sulfhydryl Oxidase를 이용한 십자화과 채소의 함황 불쾌취 억압)

  • Shim, Ki-Hwan;Lindsay, R.C.
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.555-561
    • /
    • 1990
  • Aromas of sulfur-containing volatiles from two vegetable varieties of Cruciferae Brassica oleracea and the suppression of undesirable sulfurous aromas of cruciferous vegetables by sulfhydryl oxidase of caraway seeds were examined. Aroma components were separated by gas chromatography equipped with a dual flame photometric detector The volatile sulfides produced from cabbage and broccoli varied. in the relative quantities and rates of production. according to the amount of caraway seeds added and incubation time. The amount of methanethiol and dimethyl disulfide in the cabbage and broccoli with caraway seeds was far less than those in the cabbage and broccoli. Removal of methanethiol and dimethyl disulfide was proportional to the amount of caraway seeds added, and was remarkable with 2.5% aqueous slurries of caraway seeds added.

  • PDF

Effects of ultrasonication on the analysis of sulforaphane content in vegetables (초음파 처리가 채소 중의 sulforaphane 분석에 미치는 영향)

  • Choi, A-Reum;Lee, Gun-Soon;Chae, Hee-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.794-799
    • /
    • 2008
  • The effect of ultrasonication on the sulforaphane analysis in cruciferous vegetables was investigated by GC/MS. The ultrasonication of the analysis samples was carried out in dichloromethane as a solvent, which was followed by concentration in nitrogen gas, and the analysis of sulforaphane was performed using selective ion monitoring (SIM) at m/z 72, 160, 55 and 114. The content of sulforaphane was the highest in the extract of broccoli (149 ppm), and followed by cabbage (67.9 ppm) and radish (35.4 ppm). When the vegetable samples were shaked after ultrasonication, the extraction efficiency of sulforaphane was 2.7-fold enhanced, compared to the extraction by shaking. The result suggested that pretreatment including sonication can be used fer improving the extraction efficiency of sulforaphane.