• Title/Summary/Keyword: Crucible Size

Search Result 52, Processing Time 0.025 seconds

Effect of the Sulfur Removal in Manufacturing Pt/C Electrocatalysts on the Performance of Phosphoric Acid Fuel Cell (인산형 연료전지용 백금촉매제조에서 황의 제거에 따른 전극 성능)

  • Shim, Jae-Cheol;Lee, Kyung-Jik;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.486-490
    • /
    • 1998
  • Pt/C powder which was used as electrocatalyst in a Phosphoric Acid Fuel Cell(PAFC) was fabricated by colloid method. It was reported that the sulfur from reductant, $Na_2S_2O_4$, worked as a poison against catalyst during long term operation. To remove these sulfurs, we try to treat Pt/C powder by three different methods. First, we tried to remove the sulfur according to temperature and time in $H_2$ atmosphere. As the heat treatment temperature is raised up, the effect of the removal is increased but the electrode performance is decreased because of the growth of Pt particle size. The optimal heat treatment temperature is $400^{\circ}C$, the size of Pt particle is approximately $35{\sim}40{\AA}$ and the electrode performance is $360mA/cm^2$ at 0.7 V. At $400^{\circ}C$, even though the time of heat treatment is extended, size of Pt, amounts of remaining sulfur and electrode performance is almost constant. Secondly, when we removed in a crucible at $900^{\circ}C$ the removal of the sulfur was not better, but the size of Pt particle, approximately $80{\AA}$, was smaller than that of heat treatment in $H_2$ atmosphere at $900^{\circ}C$. Lastly we treated with solvents such as acetone, benzene, and carbon disulfide. It was observed that sulfur components were removed partly by extraction with solvents, the electrode performances were similar each other.

  • PDF

Dependance of hot-zone position on AlN single crystal growth by PVT method (PVT법에 의한 AlN 단결정 성장에서 Hot-Zone 의존성)

  • Yin, Gyong-Phil;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • AlN single crystals were grown by the PT (Physical vapor transport) method with position-changable induction coil. And the graphite crucible dimensioned ${\Phi}90{\times}H120$ was used on processing. The temperature was $1950{\sim}2050^{\circ}C$ and ambient pressure was 150~1 Torr. And the hot-zone was changed according to times on growing for result comparison. When hot-zone by coil is located below far enough (> 40 mm) from AlN crystal concentration position, the as-grown crystals physical size is better ($300{\mu}m/hr$) than another condition, but the condition-reproducibility was very poor. However the closer the distance between hot-zone and AlN growing posion, the smaller the size of as-grown crystal and the rarer the generation of the crystal nuclear, but the crystal growing condition is stable for quality. The best condition for both growth rate and quality is gained when the starting position of hot-zone coil is about 20 mm distance from growing position. For the best growth condition, the position of hot-zone is very sensitive factor and the further more the condition of speed of coil shift also must control.

Crystal growth of ring-shaped SiC polycrystal via physical vapor transport method (PVT 방법에 의한 링 모양의 SiC 다결정 성장)

  • Park, Jin-Yong;Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Jung, Eun-Jin;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.163-167
    • /
    • 2020
  • Ring-shaped SiC (Silicon carbide) polycrystals used as an inner material in semiconductor etching equipment was manufactured using the PVT (Physical Vapor Transport) method. A graphite cylinder structure was placed inside the graphite crucible to grow a ring-shaped SiC polycrystal by the PVT method. The crystal polytype of grown crystal were analyzed using a Raman and an UVF (Ultra Violet Fluorescence) analysis. And the microstructure and components of SiC crystal were identified by a SEM (Scanning Electron Microscope) and EDS (Energy Disruptive Spectroscopy) analyses. The grain size and growth rate of SiC polycrystals fabricated by this method was varied with temperature variation in the initial stage of growth process.

Structural defects in the multicrystalline silicon ingot grown with the seed at the bottom of crucible (종자결정을 활용한 다결정 규소 잉곳 내의 구조적 결함 규명)

  • Lee, A-Young;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.190-195
    • /
    • 2014
  • Because of the temperature gradient occurring during the growth of the ingot with directional solidification method, defects are generated and the residual stress is produced in the ingot. Changing the growth and cooling rate during the crystal growth process will be helpful for us to understand the defects and residual stress generation. The defects and residual stress can affect the properties of wafer. Generally, it was found that the size of grains and twin boundaries are smaller at the top area than at the bottom of the ingot regardless of growth and cooling condition. In addition to that, in the top area of silicon ingot, higher density of dislocation is observed to be present than in the bottom area of the silicon ingot. This observation implies that higher stress is imposed to the top area due to the faster cooling of silicon ingot after solidification process. In the ingot with slower growth rate, dislocation density was reduced and the TTV (Total Thickness Variation), saw mark, warp, and bow of wafer became lower. Therefore, optimum growth condition will help us to obtain high quality silicon ingot with low defect density and low residual stress.

Measurement of Electrical Conductivity of Glass Melter at High Temperature (유리 용융물의 고온에서 전기 전도도 측정)

  • Kim, Taesam;Kil, Daesup;Jung, Hunsaeng;Kang, Eunhee;Yoon, Soksung
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.775-780
    • /
    • 2000
  • The electrical conductivity of glass melter at high temperature has been measured. The conductivity is an important physical property for the research and the manufacturing process of glass. Because high temperature is an inconvenient situation to measure the conductivity of glass melter, we have made a platinum crucible and electrode and have measured the conductivity at high temperature. KCl solution, of which concentration is adjusted to the conductivity of glass melter, is used to get parameters of the conductivity cell. A measuring circuit is composed with an AC 1 kHz sine wave generator and an operational amplifier. The cell constants are determined from the measured voltages and the equivalent conductances of KCl solution. Various cells are tested to find a suitable shape for high temperature experiment. The results are compared by cell size, electrode depth, and cell configuration. The conductivity of the borosilicate melter is $0.053{\Omega}^{-1}cm^{-1}$ at $1,450^{\circ}C$.

  • PDF

Synthesis of β-SiC Powder using a Recycled Graphite Block as a Source (그라파이트 블록을 원료로써 재활용한 β-SiC 분말 합성)

  • Nguyen, Minh Dat;Bang, Jung Won;Kim, Soo-Ryoung;Kim, Younghee;Jung, Eunjin;Hwang, Kyu Hong;Kwon, Woo-Teck
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.16-21
    • /
    • 2017
  • This paper relates to the synthesis of a source powder for SiC crystal growth. ${\beta}-SiC$ powders are synthesized at high temperatures (>$1400^{\circ}C$) by a reaction between silicon powder and carbon powder. The reaction is carried out in a graphite crucible operating in a vacuum ambient (or Ar gas) over a period of time sufficient to cause the Si+C mixture to react and form poly-crystalline SiC powder. End-product characterizations are pursued with X-ray diffraction analysis, SEM/EDS, particle size analyzer and ICP-OES. The purity of the end-product was analyzed with the Korean Standard KS L 1612.

Accelerated testing for evaluating bubble quality within quartz glass crucibles used for manufacturing silicon single crystal ingots (실리콘 단결정 잉곳 제조용 석영유리 도가니 내 기포 품질평가를 위한 가속시험)

  • Gyu Bin Lee;Seung Min Kang;Jae Ho Choi;Young Min Byeon;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.91-96
    • /
    • 2023
  • To verify the quality of bubbles during the use of quartz glass crucibles (QC), an appropriate accelerated testing method was proposed. The bubble state of discarded waste crucibles obtained from actual Czochralski (Cz) processes was analyzed, and optimal heat treatment conditions were suggested by varying temperature, pressure, and time using the QC test piece. By subjecting the samples to heat treatment at 1450℃, 0.4 Torr, and 40 hours, it was possible to control the bubble size and density to a similar level as those generated in the actual Cz process. In particular, by selecting a relatively lower pressure of 0.4 Torr compared to the typical range of 10~20 Torr applied in the Cz process, the time required for accelerated bubble formation testing could be reduced. However, it was determined that increasing the heat treatment temperature to 1550℃ led to the phenomenon of Ostwald ripening, resulting in larger bubbles and a rapid decrease in density. Therefore, it was concluded that it was not a suitable condition for the desired b ake test.

Effect of processing parameters on TiO2 film by room temperature granule spray in vacuum (상온진공과립분사에 의한 TiO2 코팅층에 미치는 공정변수의 영향)

  • Kim, Han-Gil;Park, Yoon-Soo;Bang, Kook-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • $TiO_2$ films, thickness of $1{\sim}30{\mu}m$ were deposited on glass substrate at room temperature by room temperature granule spray in vacuum. The starting powder was calcinated at $600^{\circ}C$ for 4 h using $Al_2O_3$ crucible in the furnace. The particle size of the $TiO_2$, $1.5{\mu}m$ was measured by a particle size analyzer. The effect of different process parameters such as number of pass, gas flow rate and feeder voltage was studied. As the number of passes increased, the film thickness increased proportionally due to adequate kinetic energy conserved. The effect of three different flow rates (i.e. 15, 25, and 35 LPM) on deposited film was investigated. As gas flow rate increased, the film thickness increased up to 25 LPM and then decreased. Higher feeder voltage with low flow rate of 15 LPM resulted in unsufficient coating thickness due to insufficient kinetic energy. Microstructure of $TiO_2$ films was investigated by scanning electron microscope and high resolution tramission electron microscope.

Fabrication of Metal Discs Using Molten Tin and Brass Droplets (주석과 황동 용탕 드롭렛을 이용한 디스크형 응고체 제조)

  • Song, Jeongho;Lee, Tae-Kyeong;Rhee, Gwang-Hoon;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.714-721
    • /
    • 2016
  • This paper proposes a simple process to fabricate tin and brass metal discs with a large surface area from molten droplets for the wet-refining process of nonferrous metals by assuming they have precious metal elements. To optimize the droplet condition in a graphite crucible, the appropriate nozzle size was determined using a simulation program (STAR-CCM+) by varying the diameters (0.5, 1.0, and 2.0 mm). The simulation results showed that both tin and brass do not fall out with a 0.5 mm diameter nozzle but they do fall out in continuous ribbon mode with a 2.0 mm nozzle. Only the 1.0mm nozzle was expected to fabricate droplets. Finally, solidified metal discs were fabricated successfully with the 1.0 mm nozzle within 10 minutes by impacting the droplets with a cooling water flowing over a Ti plate placed at the $40^{\circ}$ falling direction. The weight, average thickness, and surface area of the tin discs were 0.15 g, $107.8{\mu}m$, and $3.71cm^2$, respectively. The brass discs were 1.16 g, $129.15{\mu}m$, and $23.98cm^2$, respectively. The surface area of the tin and brass disc were 8.2 and 17.6 times the size of the tin and brass droplets, respectively. This process for precious metal extraction is expected to save cost and time.

The quality investigation of 6H-SiC crystals grown by conventional PVT method with various SiC powders

  • Yeo, Im-Gyu;Lee, Won-Jae;Shin, Byoung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.113-114
    • /
    • 2009
  • Silicon carbide is one of the most attractive and promising wide band-gap semiconductor material with excellent physical properties and huge potential for electronic applications. Up to now, the most successful method for growth of large SiC crystals with high quality is the physical vapor transport (PVT) method [1, 2]. Since further reduction of defect densities in larger crystal are needed for the true implementation of SiC devices, many researchers are focusing to improve the quality of SiC single crystal through the process modifications for SiC bulk growth or new material implementations [3, 4]. It is well known that for getting high quality SiC crystal, source materials with high purity must be used in PVT method. Among various source materials in PVT method, a SiC powder is considered to take an important role because it would influence on crystal quality of SiC crystal as well as optimum temperature of single crystal growth, the growth rate and doping characteristics. In reality, the effect of powder on SiC crystal could definitely exhibit the complicated correlation. Therefore, the present research was focused to investigate the quality difference of SiC crystal grown by conventional PVT method with using various SiC powders. As shown in Fig. 1, we used three SiC powders with different particles size. The 6H-SiC crystals were grown by conventional PVT process and the SiC seeds and the high purity SiC source materials are placed on opposite side in a sealed graphite crucible which is surrounded by graphite insulation[5, 6]. The bulk SiC crystal was grown at $2300^{\circ}C$ of the growth temperature and 50mbar of an argon pressure. The axial thermal gradient across the SiC crystal during the growth is estimated in the range of $15\sim20^{\circ}C/cm$. The chemical etch in molten KOH maintained at $450^{\circ}C$ for 10 min was used for defect observation with a polarizing microscope in Nomarski mode. Electrical properties of bulk SiC materials were measured by Hall effect using van der Pauw geometry and a UV/VIS spectrophotometer. Fig. 2 shows optical photographs of SiC crystal ingot grown by PVT method and Table 1 shows electrical properties of SiC crystals. The electrical properties as well as crystal quality of SiC crystals were systematically investigated.

  • PDF