• 제목/요약/키워드: Crossply Composite Laminate

검색결과 4건 처리시간 0.014초

초음파와 음향 방출법을 이용한 복합재료 직교적층판의 점진적 손상과정에 관한 연구 (Responses of Ultrasonic Backscattered Energy and AE Charateristics on the Progressive Damage of Crossply Composite Laminates)

  • 전흥재
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1084-1092
    • /
    • 2000
  • Responses of ultrasonic back scattered energy and AE (Acoustic Emission) characteristics related to the progressive damage of $[0/90-{2}]_s$ and $[0/90-{4}]_s$ crossply laminates were studied. It was found that the ultrasonic backscattered energy was sensitive to the matrix cracking but not sensitive to other failure mechanisms. However, AE was proved to be sensitive to matrix cracking as well as other failure mechanisms.AE signals were analyzed by investigating the amplitude and number of counts per event for corresponding applied strain. Loading and unloading tests were conducted separately. AE results showed Kaiser effect in the crossply composite laminates and ultrasonic results supported the AE results.

비선형 변형 거동을 갖는 섬유강화 복합재료의 피로수명 예측 (Fatigue Life Prediction of Fiber-Reinforced Composite Materials having Nonlinear Stress/Strain Behavior)

  • 이창수;황운봉
    • Composites Research
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 1999
  • 비선형 하중/변위 거동을 나타내는 모재 지배 복합재료의 피로수명 예측을 이론과 실험에 의해 연구하였다. 재료의 비선형성을 고려하기 위해 초기 피로계수와 탄성계수의 관계를 나타내는 응력함수를 도입하였다. 피로계수와 참고계수 개념을 기반으로 하여 새로운 피로수명 예측식이 가한 하중 수위의 함수로 유도되었다. 예측 결과는 직교이방성 탄소섬유/에폭시 적층판을 사용한 원통형 시편의 비틀림 피로 실험과 비교되었으며, 제안된 식은 실험치와 잘 일치하였다.

  • PDF

Transverse cracking based numerical analysis and its effects on cross-ply laminates strength under thermo-mechanical degradation

  • Abdelatif, Berriah;Abdelkader, Megueni;Abdelkader, Lousdad
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1063-1077
    • /
    • 2016
  • Components manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during their operating service. Both types of loadings may cause fracture and failure of composite structures. When composite cross-ply laminates of type [$0_m/90_n]_s$ are subjected to uni-axial tensile loading, different types of damage are set-up and developed such as matrix cracking: transverse and longitudinal cracks, delamination between disoriented layers and broken fibers. The development of these modes of damage can be detrimental for the stiffness of the laminates. From the experimental point of view, transverse cracking is known as the first mode of damage. In this regard, the objective of the present paper is to investigate the effect of transverse cracking in cross-ply laminate under thermo-mechanical degradation. A Finite Element (FE) simulation of damage evolution in composite crossply laminates of type [$0_m/90_n]_s$ subjected to uni-axial tensile loading is carried out. The effect of transverse cracking on the cross-ply laminate strength under thermo-mechanical degradation is investigated numerically. The results obtained by prediction of the numerical model developed in this investigation demonstrate the influence of the transverse cracking on the bearing capacity and resistance to damage as well as its effects on the variation of the mechanical properties such as Young's modulus, Poisson's ratio and coefficient of thermal expansion. The results obtained are in good agreement with those predicted by the Shear-lag analytical model as well as with the obtained experimental results available in the literature.

CFRP의 드릴작업시 AE적용에 의한 손상평가 (The Damage Evaluation for the Application of Acoustic Emission in a Drilling Procedure of the CFRP Composite Materials)

  • 최병국;윤유성
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.47-51
    • /
    • 2001
  • The carbon fiber reinforced plastics(CFRP) have been widely used in aircraft and spacecraft structures as well as sports goods because it has high specific strength, high specific stiffness and low coefficient of thermal expansion. Machining of CFRP poses problems not frequently seen for metals due to the nonhomogeneity, anisotropy, and abrasive characteristics of CFRP. Delamination is a common problem faced while drilling holes in CFRP using conventional drilling. Therefore, AE characteristics related to drilling damage process of unidirectional and [0/90/]s crossply laminate composite was studied. Also drilling damage like the delamination was observed by video camera in real time monitoring technique. From the results, we basically found the relationships between the delamination from drilling and AE characteristics for CFRP composites.

  • PDF