• 제목/요약/키워드: Crosslinking method

검색결과 130건 처리시간 0.027초

약물방출시스템 적용을 위한 락타이드/히아루론산 고분자 막의 제조 (Synthesis of Lactide/Hyaluronic Acid Polymer Membrane for the Application of Drug Delivery System)

  • 김민수;권지영;정성일
    • 멤브레인
    • /
    • 제15권4호
    • /
    • pp.281-288
    • /
    • 2005
  • 생체 적합성이 우수한 히아루론산과 생분해성이 우수한 폴리 락타이드의 이량체를 결합하여 약물 방출 시스템에 적용할 수 있는 생체 재료를 제조하고자 하였다. 냉동 건조법을 이용하여 히아루론산과 락타이드를 가교제 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC)로 가교시켰다. 생성된 막을 핵자기 공명 분광법으로 분석하여 락타이드 반응도와 EDC 반응도를 결정하였다. 히아루론산에 대한 락타이드 몰비, 가교제 농도가 증가할수록 혹은 가교 온도가 감소할수록, 락타이드 반응도가 증가하였으며 팽윤도는 감소하였다. 서로 다른 락타이드 반응도를 가진 막으로 약물 방출 실험을 수행한 결과 락타이드 반응도가 증가하면 약물 방출 속도가 감소하는 경향을 보였다. 또 친수성이 다른 여러 가지 약물로 약물 방출 실험을 수행한 결과 친수성이 우수한 약물일수록 서서히 방출되었다.

물리적 가교결합을 이용한 sPEEK 전해질막의 특성에 관한 연구 (A Study on the Properties of sPEEK Electrolytic Membranes using Physical Crosslinking)

  • 오세중
    • 한국산학기술학회논문지
    • /
    • 제17권1호
    • /
    • pp.433-440
    • /
    • 2016
  • 설폰화시킨 poly(etheretherketone)(sPEEK)막의 전해질 특성을 향상시키기 위하여 sPEEK에 imidazole과 무기물인 phosphotungstic acid(PWA)를 첨가하고 용액주조법을 이용하여 복합막을 제조하였다. TGA분석을 통하여 산-염기 상호작용에 의한 물리적 가교결합이 복합막의 설폰산그룹 분해에 대한 열저항성을 향상시키고 PWA의 첨가는 복합막의 열분해에 대한 저항성을 향상시키는 것을 확인할 수 있었다. 산-염기 상호작용은 sPEEK/imidazole 복합막의 함수율과 양이온전도도 및 메탄올 투과도를 감소시켰는데 이것은 물리적 가교결합이 복합막을 견고하게 만들기 때문이다. PWA는 sPEEK/imidazole/PWA 복합막의 함수율과 메탄올 투과도는 감소시켰지만 양이온전도를 향상시켰다. 따라서 PWA는 복합막의 선택도를 향상시키는 효과를 나타내었다.

코팅제의 가교 밀도에 따른 고무와 코팅원단의 물성 변화 (Properties of Rubbers and Coated Fabrics according to Different Cross-linking Density of Coating Agent)

  • 김수홍;성기석;백두현
    • 한국염색가공학회지
    • /
    • 제35권1호
    • /
    • pp.8-19
    • /
    • 2023
  • Silicone rubber is widely used in most industries due to diverse advantages like heat stability, UV stability, durability, chemical resistance, environment friendliness, inertness and so on. But there is limitation to expand applications due to relatively weak rubber strengths such as tensile strength and tear strength, especially in fabric coating applications. The purpose of this study is to find influence of coating agent on performances of rubber and coated fabrics and their correlation according to different crosslinking densities of silicone rubbers. Addition cure type of silicones were formulated using crosslinked MQ-type silicone resin consisting of M (R3SiO1/2) and Q (SiO4/2) and linear polymers. Raw materials used were; 1) linear vinyl endblocked polymers and vinyl functional MQ resin as main polymers, 2) linear silicone hydride polymers as crosslinkers, 3) platinum catalyst and 4) inhibitor to control curing speed. Rubber specimens were prepared to check mechanical strength using universal testing machine (UTM). Crosslinking density was calculated using Flory-Rhener equation using solvent swelling method. Differential scanning calorimetry (DSC) and scanning electron microscope (SEM-EDS) were used to characterize rubbers. Consequently, it was found that physical properties of silicone rubbers and coated fabrics can be expected by crosslinking density of rubbers. Silicone rubber formulations that contain 20 ~ 30 wt% of vinyl MQ resin showed strongest balanced performances.

Alkaline induced-cation crosslinking biopolymer soil treatment and field implementation for slope surface protection

  • Minhyeong Lee;Ilhan Chang;Seok-Jun Kang;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • 제33권1호
    • /
    • pp.29-40
    • /
    • 2023
  • Xanthan gum and starch compound biopolymer (XS), an environmentally friendly soil-binding material produced from natural resources, has been suggested as a slope protection material to enhance soil strength and erosion resistance. Insufficient wet strength and the consequent durability concerns remain, despite XS biopolymer-soil treatment showing high strength and erosion resistance in the dried state, even with a small dosage of soil mass. These concerns need to be solved to improve the field applicability and post-stability of this treatment. This study explored the utilization of an alkaline-based cation crosslinking method using calcium hydroxide and sodium hydroxide to induce non-thermal gelation, resulting in the enhancement of the wet strength and durability of biopolymer-treated soil. Laboratory experiments were conducted to assess the unconfined compressive strength and cyclic wetting-drying durability performance of the treated soil using a selected recipe based on a preliminary gel formation test. The results demonstrated that the uniformity of the gel structure and gelling time varied depending on the ratio of crosslinkers to biopolymer; consequently, the strength of the soil was affected. Subsequently, site soil treated with the recipe, which showed the best performance in indoor assessment, was implemented on the field slope at the bridge abutment via compaction and pressurized spraying methods to assess feasibility in field implementation. Moreover, the variation in surface soil hardness was monitored periodically for one year. Both slopes implemented by the two construction methods showed sufficient stability against detachment and scouring, with a higher soil hardness index than the natural slope for a year.

방사선 가교 기술로 제조된 Polyolefin/Metal Hydroxide 복합재료의 고온 열화 특성 및 난연성 (High Thermal Degradation and Flame Retardancy of Polyolefin/Metal Hydroxide Composite Prepared by Radiation Crosslinking Technology)

  • 오용현;이병민;김정인;김종규;정성린;전준표;임윤묵;최재학;박종석
    • 방사선산업학회지
    • /
    • 제18권3호
    • /
    • pp.227-233
    • /
    • 2024
  • Polyolefins (PO) are used in various industrial fields due to their excellent mechanical properties, processability, and chemical resistance. However, they have low flame retardancy, and when exposed to high temperatures, there are problem that mechanical properties deteriorate due to oxidation. In this study, we developed PO/metal hydroxide composites that exhibit excellent mechanical strength, heat resistance, and flame retardancy by using antioxidants and radiation crosslinking technology. To improve mechanical strength, heat resistance, and flame retardancy, PO/metal hydroxide/antioxidant composites were prepared and irradiated with an electron beam. Specifically, at temperatures above 200℃, the PO/metal hydroxide composites with primary and secondary antioxidants added and irradiated with a 100 kGy electron beam exhibited excellent thermal stability with a thermal shrinkage rate of less than 3%. In addition, the flame retardancy of the PO/metal hydroxide/antioxidant composites was improved due to enhanced thermal stability from electron beam irradiation and reduced thermal decomposition rate from the antioxidants. These results indicate that radiation crosslinking and antioxidants are effective method to simultaneously achieve mechanical properties, heat resistance, and flame retardancy.

가교제를 이용한 Sulfanilamide 중합체의 합성과 항균특성 (Characterization of Antibacterial activity and Synthesis of Sulfanilamide Polymer using Crosslinking Agent)

  • 김종완;윤철훈;황성규;공승대;이한섭
    • 한국응용과학기술학회지
    • /
    • 제17권1호
    • /
    • pp.37-42
    • /
    • 2000
  • Drug delivery system(DDS) have been actively studied for the past twenty years. Dual action agents are unique chemical entities comprised of two different types of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. In spite of the advent of the antibacterial agent the sulfa agents are the most widely used antibacterial agent today. In this study, new antibacterials derivative was synthesized using glutaraldehyde such as crosslinking agent for the purpose of dual-action as DDS study. Antibacterial activity of these new synthetic derivative between their structures and activities were examined by disc diffusion method. As a result, new synthetic derivative exhibited the broad antibacterial activities against Gram(+) and Gram(-) bacilli. Especially, the antibacterial effect of new synthetic derivative against Gram negative(Esherichia. coli) was much stronger than that against Gram positive.

PTCA와 BTCA를 이용한 면셀룰로오스의 에스테르 가교화에 대한 pH 영향(I) (Effect of pH on the Ester-crosslinking of Cotton Cellulose with PTCA and BTCA(I))

  • Chan-Min, Lee;Chul-Ho, Choi
    • 한국염색가공학회지
    • /
    • 제9권5호
    • /
    • pp.30-41
    • /
    • 1997
  • A purpose of this research is to prove unknown relation -ship between finish bath pH and crosslinking. In pursuit of these goals, we have treated 100% cotton broad cloth with PTCA and BTCA at different pH values. They were used with H$_{3}$PO$_{4}$, NaH$_{2}$PO$_{2}$, NaH$_{2}$PO$_{4}$, Na$_{2}$HPO$_{4}$, Na$_{3}$PO$_{4}$, catalysts to produce nonformaldehyde fabrics finishes. Treatments were applied to all cotton fabrics using a parletry-cure process. For the fully understood on the relationship of finish bath pH effect and cotton cellulose esterification, the relative concentrations of chemical species were calculated from ionization constants. The effect of pH on the cotton cellulose ester was investigated using Fourier transform infrared spectra, the surface area measurement by BET method and wrinkle recovery analysis. Results of differential FT-IR spectra and their relative concentration analysis were compared with those of catalyst treated controls. FT-IR and wrinkle recovery data indicated that the esterfication by polycarboxylic acids is pridependent. A similar phenomenon also occurred when a phosphate or hypophosphite was used. Therefore, it is necessary to choose the optimum pH range of a finishing bath in order to achieve the most effective esterification.

  • PDF

Synthesis and Properties of Partially Hydrolyzed Acrylonitrile-co-Acrylamide Superabsorbent Hydrogel

  • Pourjavadi, Ali;Hosseinzadeh, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3163-3172
    • /
    • 2010
  • In this work, a novel method to synthesis of an acrylic superabsorbent hydrogel was reported. In the two stage hydrogel synthesis, first copolymerization reaction of acrylonitrile (AN) and acrylamide (AM) monomers using ammonium persulfate (APS) as a free radical initiator was performed. In the second stage, the resulted copolymer was hydrolyzed to produce carboxamide and carboxylate groups followed by in situ crosslinking of the polyacrylonitrile chains. The results from FTIR spectroscopy and the dark red-yellow color change show that the copolymerization, alkaline hydrolysis and crosslinking reactions have been do take place. Scanning electron microscopy (SEM) verifies that the synthesized hydrogels have a porous structure. The results of Brunauer-Emmett-Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 13.9 nm. The synthetic parameters affecting on swelling capacity of the hydrogel, such as AM/AN weight ratio and hydrolysis time and temperature, were systematically optimized to achieve maximum swelling capacity (330 g/g). The swollen gel strength of the synthesized hydrogels was evaluated via viscoelastic measurements. The results indicated that superabsorbent polymers with high water absorbency were accompanied by low gel strength. The swelling of superabsorbent hydrogels was also measured in various solutions with pH values ranging from 1 to 13. Also, the pH reversibility and on-off switching behavior makes the hydrogel as a good candidate for controlled delivery of bioactive agents. Finally, the swelling of synthesized hydrogels with various particle sizes obey second order kinetics.

A Study on Existing Rubber Elasticity Theories for Stress-Strain Behavior of Rubber-like Networks

  • Meissner, B.
    • Elastomers and Composites
    • /
    • 제38권2호
    • /
    • pp.157-166
    • /
    • 2003
  • The Edwards-Vilgis slip-link theory and the Kaliske-Heinrich extended tube theory were tested experimentally using published experimental data on networks of natural and isoprene rubber and on polysiloxane networks. All parameters were adjusted to achieve an optimum fit. The data description obtained with the EV theory is not satisfactory and the parameter values tend to lie outside their reasonably expected range. But for the region of low strains, the Kaliske-Heinrich theory offers a satisfactorily accurate data description which is able to serve for practical purposes. Its crosslink term, however, is based on approximations which lead to a questionable prediction and values determined for the exponent in the entanglement term lie outside the range expected by the KH model. Thus, the title question cannot be given a positive answer. Conclusions published earlier that the trapped entanglements contribute both to the crosslink and constraint (entanglement) term are supported by the present data analysis. Experimental equibiaxial data on hydrocarbon networks do not show any maximum on their stretch ratio dependence, contrary to the predictions of molecular theories. The stretch ratio dependences of relative reduced stresses do not sensitively reflect differences in the chemical nature of the chain backbone (hydrocarbon vs. siloxane) and in the crosslinking method (end-linking vs. random crosslinking).

로즈마리산을 함유한 키토산 마이크로캡슐의 제조 (Preparation of Chitosan Microcapsules Containing Rosmarinic Acid)

  • 박진권;이동희;이천일;강기춘;표형배;신재섭
    • 접착 및 계면
    • /
    • 제10권1호
    • /
    • pp.11-16
    • /
    • 2009
  • 본 연구에서는 주름 개선 효과가 있는 것으로 알려진 rosmarinic acid를 함유하는 마이크로캡슐을 제조하였다. 벽재 물질로는 키토산을 사용하였고, 글루타르알데히드를 가교제로 사용하였으며, W/O 형태의 유화법으로 마이크로캡슐을 제조하였다. 유화제로는 span80을 사용하였으며, 가교가 시행되는 bath상의 물질은 mineral oil을 사용하였다. 제조된 키토산 마이크로캡슐은 완벽한 구의 형태로 평균 $0.5{\sim}0.9{\mu}m$ 크기를 보였으며, 교반속도와 유화제의 농도에 따른 캡슐의 크기 및 형태 변화 그리고 함유 효율을 관찰하였다. 마이크로캡슐의 방출특성을 실험하기 위하여 가교제와 유화제의 양을 변화시키면서 방출 속도를 측정하였다.

  • PDF