• Title/Summary/Keyword: Crosslinked form

Search Result 46, Processing Time 0.033 seconds

Influence of Crosslinking on Gelatinization Behavior and Morphological Change of Potato Starch (가교결합 감자 전분의 호화특성과 형태학적 변화)

  • Kim, Hyang-Sook;Lee, Young-Eun
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.580-586
    • /
    • 1996
  • Gelatinization behavior and morphology of epichlorohydrin-crosslinked potato starches (XPs) were investigated. Native potato starch showed a very steep single stage swlling pattern, but crosslinked starches showed various patterns with the degree of crosslinking. Swelling power, solubility and light transmittance were reduced drastically as the degree of crosslinking increased. Brabender initial pasting temperature and peak temperature of crosslinked starches increased because the crosslinking reinforces the intermolecular net work of the starches. Although the swelling of the potato starch granule was inhibited by crosslinking as compared to that of the native one, Brabender peak viscosities (6.5% w/v, db) were on the order of 2,500 units for the native potato starch, 3,700 for the XP with 2.300 anhydroglucose units per crosslinking (AGU/CL) and 3,400 for the XP with 2,100 AGU/CL, due to the decreased breakdown of the swollen granule resulting from the resistance to heat and shear. The XP with 1,900 AGU/CL, however, did not show the peak viscosity and the viscosity was on the order of 500 units because of the excessive unhibition of the swelling. Unlike the native potato starch, 6.5%(m/v, db) pastes of the crosslinked potato starches could form gels, which could be predicted from the Brabender setback and consistency index. When the degree of crosslinking is low, random contraction and radial swelling of the granule was possible. As the degree of crosslinking increased, morphological change became similar to the single dimensional tangential swelling observed from the lenticular wheat starch. These morphological change during heating in excess water explained the gelatinization behaviors of crosslinked starches tested.

  • PDF

Silane-crosslinked Proton Exchange Membranes Prepared by a Stepwise Radiation Grafting (방사선 그래프트를 순차적으로 진행하여 제조된 실란 가교구조의 수소이온교환막)

  • Lee, Ji-Hong;Choi, Hongsuk;Song, Ju-Myung;Sohn, Joon-Yong;Shin, Junhwa
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.816-821
    • /
    • 2012
  • In this study, silane-crosslinked proton exchange membranes were prepared by step-wise radiation grafting of styrene and 3-(trimethoxysilyl)propyl methacrylate (TMSPM) onto an poly(ethylene-co-tetrafluoroethylene) (ETFE) film and followed by sol-gel processing and sulfonation. The sequentially grafted films with styrene to provide the proton conductivity and TMSPM to form the crosslinked structure were prepared by different grafting order. The structural changes and thermal properties of the prepared films were investigated by FTIR and TGA, respectively. After the introduction of sulfonic acid functional groups, the distributions of sulfonic acid group and silicon atoms at the inside of the sulfonated membranes were analyzed by SEM-EDX.

Production and properties of cross-linked recombinant pro-resilin: an insect rubber-like biomaterial

  • Kim, Mi-Sook;Elvin, Chris;Lyons, Russell;Huson, Mickey
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.256-256
    • /
    • 2006
  • The design and synthesis of novel biomolecular materials, based on mimicking the properties of molecules found in nature, is providing materials with unusual properties. Resilin serves as an energy storage material in insects and facilitates flight, jumping (in fleas, froghoppers etc) and sound production (cicadas, etc). Resilin is initially produced as a soluble protein and in its mature form is crosslinked through formation of dityrosine units into a very large insoluble polymer. In the present study, we have synthesized a recombinant form of resilin that can be photochemically cross-linked into a resilient, rubber-like biomaterial that may be suitable for spinal disc implants. This material is almost perfectly elastic and its fatigue lifetime in insects must be >500 million cycles.

  • PDF

Separation of MeOH/MTBE mixtures through chitosan composite membranes using pervaporation

  • Woo, Dong-Jin;Nam, Sang-Yong;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.62-64
    • /
    • 1996
  • Chitin, which is obtained mainly from the cuticle of a marine crustacean, has recently aroused great interest in its industrial and biomedical applications. Chitosan, deacetylated form of chitin, appears to be more useful for biomedical application and dehydration of aqueous solutions than chitin, since it has both hydroxyl and amino groups that can be modified easily. Amino groups on chitosan reacts with dialdehyde to form a Schiff base and then crosslinked, and can be easily neutralized with sulfuric acid and metal ions. Polyfunctional metal ions can form a metal-polyelectrolyte complexes with chitosan. Membranes used in modules so far working in industrial pervaporation plants are generally of composite type. This composite membrane was prepared by coating a porous polysulfone ultrafiltration membrane support of definite structure with a thin, dense layer of permselective chitosan. To apply industrial scale pervaporation process for dehydration of aqueous ethanol and isopropanol, chitosan composite membranes were prepared and tested at various conditions.

  • PDF

Aging Effect of Poly(vinyl alcohol) Membranes Crosslinked with Poly(acrylic acid-co-maleic acid)

  • Rhim Ji Won;Hwang Ho Sang;Kim Dae Sik;Park Ho Bum;Lee Chang Hyun;Lee Young Moo;Moon Go Young;Nam Sang Yong
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.135-140
    • /
    • 2005
  • Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(acrylic acid-co-maleic acid) (PAM) were prepared to investigate the effect of aging on their morphology by swelling them for up to 7 days. PAM was used both as a crosslinking agent and as a donor of the hydrophilic-COOH group. A $30 wt\%$ weight loss of the dry membrane was observed in the swelling test after 6 days. The surface of the membrane was dramatically changed after the swelling test. The surface roughness of the PVA/PAM membrane was increased, as determined by atomic force microscopy (AFM). The swelling loosened the polymer structure, due to the release of the unreacted polymer and the decomposition of the ester bond, thereby resulting in an increase in the free volume capable of containing water molecules. The water molecules present in the form of free water were determined by differential scanning calorimetry (DSC). The fraction of free water increased with increasing swelling time. The swelling of the membrane may provide space for the transport of protons and increase the mobility of the protonic charge carriers. The proton conductivity of the membranes measured at T= 30 and $50^{\circ}C$ was in the range of $10^{-3} to 10^{-2} S/cm$, and slightly increased with increasing swelling time and temperature.

In Situ Crosslinked Ionic Gel Polymer Electrolytes for Dye Sensitized Solar Cells

  • Shim, Hyo-Jin;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku;Suh, Dong-Hack
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.424-428
    • /
    • 2008
  • We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the $TiO_2$ nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of $5.69\;mAcm^{-2}$, an open circuit voltage of 0.525 V, and a fill factor of 0.43.

Durable Press Finish of Cotton Fabric Using Malic Acid as a Crosslinker

  • Kim, Byung-Hak;Jang, Jinho;Ko, Sohk-Won
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.116-121
    • /
    • 2000
  • It has been considered that malic acid, $\alpha$-hydroky succinic acid, could not form crosslinks in the cellulosic materials unless activated by other polycarboxylic acids such as butanetetracarboxylic acid or citric acid because there are only two carboxylic acids per molecule available fur the formation of one anhydride intermediate. However we found that the dicarboxylic malic acid with sodium hypophosphite catalyst without the addition of other crosslinkers was able to improve wrinkle resistance of cotton up to $294^{\circ}$(dry WRA) and $285^{\circ}$ (wet WRA), which is a measure of crosslinking level in cotton. $^1$H FT-NMR, FT-IR and GPC analysis indicated the in-situ formation of an trimeric $\alpha$, $\beta$-rnalic acid with a composition of 1:3 through the esterification between hydroxyl group and one of carboxylic groups in malic acid during curing. The crosslinking of cotton was attributed to the trimeric $\alpha$, $\beta$-malic acid, a tetracarboxylic acid, which can form two anhydride rings during curing. The influence of crosslinking conditions such as concentrations of malic acid and catalyst, pH of the formulation bath, and curing temperature were investigated in terms of imparted wrinkle resistance and whiteness. The addition of reactive polyurethane resin in the formulation slightly increased the mechanical strength retention of crosslinked fabric coupled with additional increase in wrinkle resistance.

  • PDF

Synthesis and Property of Modified PMMA Resin Using Polyurethane and Polyurethane Dimethacrylate (Polyurethane과 polyurethane dimethacrylate를 이용한 내충격성 PMMA수지의 합성과 그 물성)

  • Kim, Dong-Hyun;Kim, Ju-Young;Seo, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.616-626
    • /
    • 1993
  • Polyurethane(PU) have an excellent flexibility and toughness so that it has been widely used as an elastomer. PMMA was blended with PU to improve the impact property. Five types of PU, having different molecular weight and different polyol types, were prepared and blended with PMMA in order to investigate the effect of molecular weight and polyol type of PU on property of PU-PMMA blend. Tensile strength of PU-PMMA blend was determined by Inston. Differential Scanning Calorymetry(DSC) and Scanning. Elctron Microscopy(SEM) were used to observe morphology change and glass transition temperature changes of PU-PMMA blends. Transparency of PU-PMMA blends was determined by haze meter. But, owing to intrinsic incompatability of PU-PMMA, Low impact strength of PMMA wasn't improved through PU-PMMA blend. therefore, polyurethane dimethacrylate(PUD), having similiar chemical structure to PU and two vinyl group at both ends, was prepared and reacted with methyl methacrylate(MMA) to form crosslinked copolymer Mechanical property of this crosslinked polymer, such as impact strength and transparency, was investigated by Instron, Izod type (Cantilever beam) impact tester and haze meter. Results of these measurements showed that crosslinked copolymer of PUD-MMA was better impact resistance than PMMA and maintained similar transparency to PMMA.

  • PDF

Preparation of photoresist-derived carbon micropatterns by proton ion beam lithography and pyrolysis

  • Nam, Hui-Gyun;Jung, Jin-Mook;Hwang, In-Tae;Shin, Junhwa;Jung, Chang-Hee;Choi, Jae-Hak
    • Carbon letters
    • /
    • v.24
    • /
    • pp.55-61
    • /
    • 2017
  • Carbon micropatterns (CMs) were fabricated from a negative-type SU-8 photoresist by proton ion beam lithography and pyrolysis. Well-defined negative-type SU-8 micropatterns were formed by proton ion beam lithography at the optimized fluence of $1{\times}10^{15}ions\;cm^{-2}$ and then pyrolyzed to form CMs. The crosslinked network structures formed by proton irradiation were converted to pseudo-graphitic structures by pyrolysis. The fabricated CMs showed a good electrical conductivity of $1.58{\times}10^2S\;cm^{-1}$ and a very low surface roughness.

A Study on the Handle of Cotton Fabric treated with Chitosan Polyurethane Mixed Solution by KES (II) (키토산-폴리우레탄 혼합용액(混合溶液)으로 처리(處理)된 면직물(綿織物)의 KES에 의한 태분석(態分析) (II))

  • Yoon, Se-Hee;Jeon, Dong-Won;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.8 no.1
    • /
    • pp.156-163
    • /
    • 2004
  • The purpose of this study is to investigate the change of handle when cotton fabric is treated with chitosan-polyurethane mixed solution and crosslinked with epichlorohydrin in order to form three-dimensional crosslinks in the molecules, which in turn would improve the wash-fastness of the chitosan-treated fabrics. The application of epichlorohydrin decreased the EM(Tensile extensibility) and WT(Tensile energy) values, indicating the stiffness increased in the treated fabrics due to the 3-dimensional crosslinking. The crosslinking of the cotton fabric samples resulted in the increase in T.H.V. effectively for the use of summer dress shirt fabric.