• Title/Summary/Keyword: Crosslinked ${\beta}$-Cyclodextrin

Search Result 13, Processing Time 0.02 seconds

Development of Cholesterol-reduced Mayonnaise with Crosslinked β-Cyclodextrin and Added Phytosterol (가교화 β-Cyclodextrin과 식물성 Sterol을 이용한 콜레스테롤 저하 마요네즈의 연구)

  • Jung, Tae-Hee;Ha, Hyun-Jee;Ahn, Joung-Jwa;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The objective of the present study was to develop cholesterol-reduced and phytosterol-supplemented mayonnaise using crosslinked $\beta$-cyclodextrin and examine its physicochemical and sensory attributes during 10 months of storage. The composition of cholesterol-reduced phytosterol-supplemented mayonnaise was similar to the control. The amount of cholesterol removed ranged from 90.67 to 92.47%. The TBA absorbance of the samples showed that the more phytosterol the sample contained, the lower the TBA absorbance value. The viscosity of cholesterol-reduced mayonnaise with 2.0% phytosterol decreased significantly during storage (p<0.05). The color changes of mayonnaise during storage showed a decrease in the L- and b-values, and an increase in the a-value. The experimental mayonnaise maintained emulsion stability, which was significantly lower in 2.0% phytosterol-supplemented mayonnaise. With regard to sensory attributes, most characteristics were similar to the control mayonnaise, however, the addition of phytosterol had a negative effect on stickiness and bitterness. These results indicate that the cholesterol-reduced and phytosterol-supplemented mayonnaise has decreased oxidation and maintains most of its physicochemical and sensory properties during storage.

Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok;Yoo Ji-Young;Kang Moon-Sung;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.449-455
    • /
    • 2006
  • Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

Development of Functionality in Cheese (기능성 향상 치즈 개발 연구)

  • Ahn, Sung-Il;Choi, Kyung-Hoon;Kwak, Hae-Soo
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Cheese is a nutritious food with various balanced nutrients, such as proteins, peptides, amino acids, fats, fatty acids, vitamins and minerals. Domestic cheese varieties and quality need to be improved to prevent imported cheese. To develop those cheeses, search for previous works and research for new products are needed. In cheese ripening of hard cheese, such as Cheddar or Parmesan cheese, is ripened for 2 to 24 months at 2 to 16$^{\circ}C$ to develop desired cheese flavor and body characteristics. Long time with low temperature to ripen the cheese requires high expenses. So accelerated cheese ripening is a good potential for saving in industry. Methods for acceleration of cheese ripening are temperature control, addition of bacteria or enzymes. To develop the functionality of cheese, addition of microencapsulated various probiotics and nutrients, such as iron, removal of cholesterol by crosslinked ${\beta}$-cyclodextrin, lowering blood cholesterol and serum glucose by nanopowdered functional materials et al. are necessary. Therefore, this review focused on the functionality of cheese, such as the acceleration of cheese ripening, microencapsulated probiotics and iron, and cholesterol removal.

  • PDF