• Title/Summary/Keyword: Cross-ventilation

Search Result 126, Processing Time 0.025 seconds

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

Hematologic Toxicity in Patients Undergoing Radical Anti-cancer Therapy: A Cross-Sectional Analysis of Patients in an Oncology Ward in India

  • Roy, Soumyajit;Mallick, Supriya;Raza, Md. Waseem;Haresh, Kunhi Parambath;Gupta, Subhash;Sharma, Daya Nand;Julka, Pramod Kumar;Rath, Goura Kisore
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3587-3592
    • /
    • 2014
  • Burden of cancer is progressively increasing in developing countries like India which has also led to a steep rise in toxicity due to anti-cancer therapy. A cross-sectional analysis was here conducted for patients with different malignancies (except leukaemia) who while undergoing radical anti-cancer therapy were admitted to our oncology ward from January-July 2013. In a total of 280 patients, the total number of toxicity events was 473. Nine patients expired over this time period. Among the events, grade 2 anaemia the most common (n=189) while the most common grades of neutropenia and thrombocytopenia were grade 4 (n=114) and grade 2 (n=48), respectively. Among the tracable microbial etiologies, gram negative bacteria were the most commonly found pathogens. Treatment interruptions took place in 240 patients (median duration=8.8 days). Prolonged hospital admission, intensive care and artificial ventilation support was needed to be given in 48, 7 and 13 patients respectively. Advanced NSCLC, KPS <70, pancytopenia and artificial ventilation requirement were found to have a significant impact on death. Such studies show the prevailing practice from institutes of our country and may guide us formulating a guideline for managing such toxicities for this part of the world.

The onset of extreme fire behaviour in a mine drift

  • Hansen, Rickard
    • Geosystem Engineering
    • /
    • v.21 no.5
    • /
    • pp.282-290
    • /
    • 2018
  • The onset of extreme fire behaviour in a mine drift with longitudinal ventilation was analysed. A fire in a mine drift with continuous fuel load, involving several separate fires may lead to flames tilted horizontally and filling up the entire cross section. This will lead to earlier ignition, higher fire growth rate, higher fire spread rate and a severe fire behaviour. The focus has been on what changes take place at the onset and signs of the impending phenomenon. It was found that the fire gas temperature at the ceiling level provided a poor indicator. At the downstream far-field region of the fire, the sudden temperature increase at the lowest levels of the cross section and the sudden increase in flow velocities would provide signs of extreme fire behaviour. The corresponding full-scale heat release rates of the experiments at the onset of extreme fire behaviour were found to be very high for mining applications but not necessarily for tunnel fires. The heat release rate threshold for a mine drift with smaller cross-sectional dimensions would decrease considerably, increasing the likelihood of occurrence. The distance between the fuel items will play an important role during the initiation of horizontal flames.

A Study on Ventilation Characteristics of LNG Carrier Hood room by PIV and CFD (PIV와 CFD에 의한 LNG선박의 Hood room 환기특성에 관한 연구)

  • Cho, D.H.;Kim, D.C.;Kim, M.E.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.673-679
    • /
    • 2000
  • LNG Carriers are currently known as sole commercial means of shipping natural gas on the sea. They are designed to proven dangerous explosion for shipping a lot of gas over long distance. In this study. In this study, a scaled model chamber was made to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model using visualization equipments with laser apparatus and image intensifier CCD camera gated by an AOM controller Twelve different kinds of measuring area were selected as experimental condition. Instant simultaneous velocity vectors at whole field were measured by using 2-D PIV system which software adopts two-frame grey-level cross correlation algorithm. To look into stagnation area of hood room for LNG carrier, a three-dimensional numerical simulation with standard ${\kappa}-{\varepsilon}$ model was carried out by using PHOENICS for three kinds of Reynolds number, $6.5{\times}10^3$, $9.7{\times}10^3\;and\;1.29{\times}10^4$, based on the cavity inlet velocity and cavity height. The flow pattern showed the large scale counter-clockwise forced-vortex rotated at center area, small eddies at each corner and stagnation area located at left-back upper side of model.

  • PDF

Aerodynamic measurements of across-wind loads and responses of tapered super high-rise buildings

  • Deng, Ting;Yu, Xianfeng;Xie, Zhuangning
    • Wind and Structures
    • /
    • v.21 no.3
    • /
    • pp.331-352
    • /
    • 2015
  • A series of wind tunnel tests were conducted on tapered super high-rise buildings with a square cross section by applying synchronous pressure measurement technology. The effects of global strategy of chamfered modification on aerodynamic loads and wind-induced responses were investigated. Moreover, local aerodynamic strategies of opening a ventilation slot in the corner of equipment and refuge floors were carried out. Results show that the global strategy of tapered elevation increased the vortex shedding frequency, but reduced vortex shedding energy, leading to reduction of across-wind aerodynamic loads and responses. Chamfered modification suppressed the across-wind vortex shedding effect on tapered buildings. Opening the ventilation slot further suppressed the strength of vortex shedding and reduced the residual energy related to vortex shedding in aerodynamic loads of chamfered buildings. Finally, the optimized locations of local aerodynamic strategies were suggested.

Hard rock TBM project in Eastern Korea

  • Jee, Warren W.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.33-41
    • /
    • 2008
  • The longest tunnel has been halted at Daekwanryung by the failure of the host country of the Winter Olympiad in 2014, but modern High-Power TBM will come to Korea to excavate these long tunnels to establish the better horizontal connection between the western and eastern countries to improve the strong powerful logistic strategy of Korean peninsula. Train operation provides a key function of air movements in a long underground tunnel, and heat generation from transit vehicles may account of the most heat release to the ventilation and emergency systems. This paper indicates the optimal fire suppress services and safety provision for the long railway tunnel which is designed twin tunnel with length 22km in Gangwon province of Korea. The design of the fire-fighting systems and emergency were prepared by the operation of the famous long-railway tunnels as well as the severe lessons from the real fires in domestic and overseas experiences. Designers should concentrate the optimal solution for passenger's safety at the emergency state when tunnel fires, train crush accidents, derailment, and etc. The optimal fire-extinguishing facilities for long railway tunnels are presented for better safety of the comfortable operation in this hard rock tunnel of eastern mountains side of Korea. Since year 1900, hard rock tunnel construction has been launched for railway tunnels in Korea, tunnels have been built for various purposes not only for infrastructure tunnels including roadway, railway, subway, and but also for water and power supply, for deposit food, waste, and oils etc. Most favorable railway tunnel system was discussed in details; twin tunnels, distance of cross passage, ventilation systems, for the comfortable train operations in the future.

  • PDF

Reliable Prognostic Cardiopulmonary Function Variables in 110 Patients With Acute Ischemic Heart Disease

  • Lee, Jeong Jae;Park, Chan-hee;You, Joshua (Sung) Hyun
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.200-207
    • /
    • 2022
  • Background: The oxygen uptake efficiency slope (OUES) is the most important index for accurately measuring cardiopulmonary function in patients with acute ischemic heart disease. However, the relationship between the OUES variables and important cardiopulmonary function parameters remain unelucidated for patients with acute ischemic heart disease, which accounts for the largest proportion of heart disease. Objects: The present cross sectional clinical study aimed to determine the multiple relationships among the cardiopulmonary function variables mentioned above in adults with acute ischemic heart disease. Methods: A convenience sample of 110 adult inpatients with ischemic heart disease (age: 57.4 ± 11.3 y; 95 males, 15 females) was enrolled at the hospital cardiac rehabilitation center. The correlation between the important cardiopulmonary function indicators including peak oxygen uptake (VO2 peak), minute ventilation (VE)/carbon dioxide production (VCO2) slope, heart rate recovery (HRR), and ejection fraction (EF) and OUES was confirmed. Results: This study showed that OUES was highly correlated with VO2 peak, VE/VCO2 slope, and HRR parameters. Conclusion: The OUES can be used as an accurate indicator for cardiopulmonary function. There are other factors that influence aerobic capacity besides EF, so there is no correlation with EF. Effective cardiopulmonary rehabilitation programs can be designed based on OUES during submaximal exercise in patients with acute ischemic heart disease.

Effect of a CPR Educational Face Shield on Pathogenic Bacteria Protection (심폐소생술 교육용 페이스 쉴드의 병원성 세균 차단 효과)

  • Kim, Eun-Mee;Shim, Gyu-Sik;Roh, Sang-Gyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.137-141
    • /
    • 2016
  • Cross contamination between a patient and rescuer or CPR trainees can occur when performing mouth to mouth ventilation during cardiopulmonary resuscitation (CPR). On the other hand, there has been a lack of research on the filtration efficacy of face shields that are designed to protect people from cross-contamination. This study aims to secure the safety of rescuers from communicable diseases in pre-hospital emergency settings and CPR trainees by verifying the protective effects of face shields. The FA shield and CM Shield were used to verify the safety. The bacteria collected from filters used by CPR trainees were incubated. These incubated bacteria were smeared onto the new filters, and were then blown out through the filters using a Bag Valve Mask (BVM) and the pathogens at the front and the back of the filters were checked. While the FA shield was effective in preventing the transmission of pathogens, the CM shield did not prevent the transmission of pathogens. Therefore, some of face shields that received national certification are ineffective in preventing cross-contamination. Accordingly, it is necessary to verify the safety of other face shields used domestically.

Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West- (역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로-)

  • Kim, Tai-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

Increase In Mean Alveolar Pressure Due To Asymmetric Airway Geometry During High Frequency Ventilation

  • Cha, Eun-J.;Lee, Tae-S.;Goo, Yong-S.;Song, Young-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.89-96
    • /
    • 1993
  • During high frequency ventilation (HFV), mean alveolar pressure has been measured to increase with mean airway opening pressure controlled at a constant level in both humans and experimental animals. Since this phenomenon could potentiate barotrauma limiting advantages of HFV, the present study theoretically predicted the difference between menu alveolar and airway opening pressures ($MP_{alv}$). In a Weibel's trumpet airway model, approximated formula for $MP_{alv}$ was derived based on momentum conservation assuming a uniform velocity profile. The prediction, equation was a func pion of gas density($\rho$), mean flow rate(Q), and diameter of the airway opening where the pressure measurement was made($D_0$) : $MP_{alv}=4{\rho}(Q/D_0^{2})^2$. This was a result of the difference in crosssectional area between the alveoli and the airway opening. A simple aireway model experiment was performed and the results well fitted to the prediction, which demonstrated the validity of the present analysis. Previously reported $MP_{alv}$ data from anesthetized dogs in supine position were comparable to the predicted values, indicating that the observed dissociation between mean alveolar and airway opening pressures during HFV can be explained by this innate geometric (or cross-sectional area) asymmetry of the airways. In lateral position, however, the prediction substantially underestimated the measurements suggesting involvement of other important physiological mechanisms.

  • PDF