• Title/Summary/Keyword: Cross-ventilation

Search Result 126, Processing Time 0.027 seconds

Correlation of Tracheal Cross-sectional Area with Parameters of Pulmonary Function in COPD (만성 폐쇄성 폐질환에서 기관의 단면적과 폐기능지표와의 상관관계)

  • Lee, Chan-Ju;Lee, Jae-Ho;Song, Jae-Woo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Chung, Hee-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.46 no.5
    • /
    • pp.628-635
    • /
    • 1999
  • Background : Maximal expiratory flow rate is determined by the size of airway, elastic recoil pressure and the collapsibility of airway in the lung. The obstruction of expiratory flow is one of the major functional impairments of emphysema, which represents COPD. Nevertheless, expiratory narrowing of upper airway may be recruited as a mechanism for minimizing airway collapse, and maintaining lung volume and hyperinflation by an endogenous positive end-expiratory pressure in patients with airflow obstruction. We investigated the physiologic role of trachea in respiration in emphysema. Method : We included 20 patients diagnosed as emphysema by radiologic and physiologic criteria from January to August in 1997 at Seoul Municipal Boramae Hospital. Chest roentgenogram, high resolution computed tomography(HRCT), and pulmonary function tests including arterial blood gas analysis and body plethysmography were taken from each patient. Cross-sectional area of trachea was measured according to the respiratory cycle on the level of aortic arch by HRCT and calibrated with body surface area. We compared this corrected area with such parameters of pulmonary function tests as $PaCO_2$, $PaO_2$, airway resistance, lung compliance and so on. Results : Expiratory cross-sectional area of trachea had significant correlation with $PaCO_2$ (r=-0.61, p<0.05), $PaO_2$ (r=0.6, p<0.05), and minute ventilation (r=0.73, p<0.05), but inspiratory cross-sectional area did not (r=-0.22, p>0.05 with $PaCO_2$, r=0.26, p>0.05 with $PaO_2$, and r=0.44, p>0.05 with minute ventilation). Minute ventilation had significant correlation with tidal volume (r=0.45, p<0.05), but it had no significant correlation with respiratory frequency (r=-0.31, p>0.05). Cross-sectional area of trachea had no significant correlation with other parameters of pulmonary function including $FEV_1$, FVC, $FEV_1$/FVC, peak expiratory flow, residual volume, diffusing capacity, airway resistance, and lung compliance, whether the area was expiratory or inspiratory. Conclusion : Cross-sectional area of trachea narrowed during expiration in emphysema, and its expiratory area had significant correlation with $PaCO_2$, $PaO_2$, and minute ventilation.

  • PDF

The Smoke Propagating Distance in the Reduced-scale Model for a Subway Railroad Tunnel (축소 모형을 이용한 지하철터널에서의 연기전파거리 측정)

  • Kim, Myung-Bae;Choi, Byung-Il;Oh, Chang-Bo;Han, Yong-Shik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.295-304
    • /
    • 2005
  • The smoke propagating distances are measured in case that a fire occurs within the subway railroad tunnel. The tunnel is 800m long and the dimension of the cross-section is. Three vertical shafts exist for smoke ventilation. The experiments are performed using the 1/50 reduced-scale model. The smoke propagating distances are measured by thermocouples and by visualization for the accuracy. In order to understand the effect of a fire size and ventilation capacity of the shafts on the smoke propagating distance, 9 test scenarios are chosen. Based on the results, the smoke propagating distance is shown to be important criteria for the ventilation design of the tunnel.

  • PDF

Thermal and Fluid Analysis on Air Distribution in a Elevator Car (엘리베이터 카 내부 기류분포에 관한 열 유동해석)

  • Chung, Kyung Taek;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2020
  • The purpose of this study is to observe the visualization of the flow field for air flow distributed in the car from the ventilation fan installed in the ceiling of the passenger elevator car through the numerical analysis using computational fluid dynamics. STAR-CCM+, which is a code used for the numerical analysis, was used to predict the airflow distribution inside the elevator car. The numerical analysis of the distribution of the air current in the elevator was carried out. As a result, the analysis results for each point and the visualization of the air current distribution and the temperature distribution in the elevator car and were obtained. It was found that heat transfer was actively occurring inside the car due to the influence of the flow field discharged from the ventilation vent installed in the ceiling in the elevator car, and especially the convection heat transfer of Model-2 was more active than that of Model-1. As a result, the temperature distribution inside the car was found to be relatively low. In addition, the temperature distribution at a cross-section of 1700mm height in the elevator car shows that Model-2 is the location of the ventilation vent which makes people feel more comfortable.

Numerical Simulation of Smoke Ventilation in Rescue Route and Cross Passage of Railroad Tunnel (철도터널 화재시 연결통로 및 대피로 제연을 위한 수치해석 연구)

  • Yang, Sung-Jin;Hur, Nahm-Keon;Ryou, Hong-Sun;Kim, Dong-Hyeon;Jang, Yong-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • A transient 3-D numerical simulation was performed to analyze the fire safety in a railway tunnel equipped with a mechanical ventilation system. The behavior of pollutants was studied for the emergency operation mode of ventilation system in case of fire in the center of the rescue station and near the escape route. Various schemes of escape route construction for connection angle($45^{\circ}$, $90^{\circ}$, 135^{\circ}$) and slope($10^{\circ}$) were evaluated for the ventilation efficiency in the fire near the escape route. From the results, it was shown that the mode of the ventilation fan operation which pressurizes the tunnel not under the fire and ventilates the smoke from the tunnel under the fire is most effective for the smoke control in the tunnel in case of the fire occurrence. It was also shown that the blowing of jet fan from the rescue tunnel to the main tunnel should be in the same direction as the flow direction in the main tunnel arising from the traffic and the buoyancy.

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

Flow Characteristics of Rectangular Space with Asymmetric Inlet and Outlet (비대칭 입출구를 갖는 장방형공간의 유동특성)

  • Lee, Cheol-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.261-266
    • /
    • 2006
  • In this study, a scaled model chamber was built to investigate ventilation characteristics of the hood room in LNG carrier. Experimental study was performed in model by visualization equipment with laser apparatus. Four different kinds of measuring area were selected as experimental condition Instant simultaneous velocity vectors at whole field were measured by 2-D PIV system and its software adopting two-frame grey-level cross correlation algorithm. The flow pattern reveals the large scale counter-clockwise forced-vortex rotation at center area.

  • PDF

A Study on Ventilation Effects on Smoke Behavior in Rescue Station for Tunnel Fires (철도터널 화재시 구난역 내의 연기거동에 미치는 배연효과에 관한 연구)

  • Jang, Won-Cheol;Kim, Dong-Woon;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.294-299
    • /
    • 2008
  • The present study investigates the ventilation effects on smoke spreading with the rescue stations. Experiments for tunnel fires were carried out for n-heptane pool em at different fire locations, and the heat release rates (HRR) were obtained by addition, using the commercial code (FLUENT), the present article presents numerical results for smoke behavior in railway tunnels with rescue station, and it uses the MVHS (Modified Volumetric Heat Source) model for estimation of combustion products resulting from the fire source determined from the HRR measurement. As a result, it is found that smoke propagation is prevented successfully by the fire doors located inside the cross-passages and especially, the smoke behavior in the accident tunnel can be controlled through the ventilation system because of substantial change in smoke flow direction in the cross-passages.

Development of a Low Pressure Auxiliary Fan for Local Large-opening Limestone Mines (대단면국내석회석광산용저풍압국부선풍기개발연구)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.543-555
    • /
    • 2015
  • At present, local limestone mines with large opening employ auxiliary fans for workplace ventilation which have been used in coal mines with much smaller airways. Considering the low static pressure loss in the large-opening mines, high pressure auxiliary fans face serious economical limitations mainly due to their excessive capacity. The optimal fan selected for the ventilation in large-opening working places should supply air quantity enough for maintaining safe environment and keep its operating cost as low as possible. This study focuses on the development of a low pressure auxiliary fan designed to have smaller range of the static head but to have more potential for higher ventilation and energy efficiency. The flow characteristics of high and low pressure auxiliary fans were theoretical as well as experimentally investigated to assess the ventilation efficiency in term of environmental and economical aspects. Moreover, the low pressure fan was tested in two limestone mine sites with small and large cross-sectional areas for evaluating its ventilation efficiency. Results from this study can be applied to improve the economy and efficiency of auxiliary fan for ensuring better air quality and work environment management.

The Impact of Double-Skin Façades on Indoor Airflow in Naturally Ventilated Tall Office Buildings

  • Yohan, Kim;Mahjoub M. Elnimeiri;Raymond J. Clark
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2023
  • Natural ventilation has proven to be an effective passive strategy in improving energy efficiency and providing healthy environments. However, such a strategy has not been commonly adopted to tall office buildings that traditionally rely on single-skin façades (SSFs), due to the high wind pressure that creates excessive air velocities and occupant discomfort at upper floors. Double-skin façades (DSFs) can provide an opportunity to facilitate natural ventilation in tall office buildings, as the fundamental components such as the additional skin and openings create a buffer to regulate the direct impact of wind pressure and the airflow around the buildings. This study investigates the impact of modified multi-story type DSFs on indoor airflow in a 60-story, 780-foot (238 m) naturally ventilated tall office building under isothermal conditions. Thus, the performance of wind effect related components was assessed based on the criteria (e.g., air velocity and airflow distribution), particularly with respect to opening size. Computational fluid dynamics (CFD) was utilized to simulate outdoor airflow around the tall office building, and indoor airflow at multiple heights in case of various DSF opening configurations. The simulation results indicate that the outer skin opening is the more influential parameter than the inner skin opening on the indoor airflow behavior. On the other hand, the variations of inner skin opening size help improve the indoor airflow with respect to the desired air velocity and airflow distribution. Despite some vortexes observed in the indoor spaces, cross ventilation can occur as positive pressure on the windward side and negative pressure on the other sides generate productive pressure differential. The results also demonstrate that DSFs with smaller openings suitably reduce not only the impact of wind pressure, but also the concentration of high air velocity near the windows on the windward side, compared to SSFs. Further insight on indoor airflow behaviors depending on DSF opening configurations leads to a better understanding of the DSF design strategies for effective natural ventilation in tall office buildings.

Analysis of the Types of External Wall and Roof Structure Layer Composition of CLT Building (CLT 건축물의 외벽 및 지붕 구조체 레이어 구성 유형 분석)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.4
    • /
    • pp.71-78
    • /
    • 2020
  • Today, the whole world is going through a big chaos due to the COVID-19, but paradoxically, the emergence of COVID-19 has been leading to the need for sustainable development, such as Green New Deal that can improve global warming and carbon emissions, and the need for sustainable architecture is growing bigger and bigger in the architectural field as well. The level of CLT buildings in Korea is at a very rudimentary stage, while CLT buildings remedying existing wooden buildings are getting the spotlight among European countries for sustainable architecture. This study was conducted to categorize structure layer compositions of overseas CLT buildings and analyze architectural techniques and materials applied by collecting and analyzing information about CLT structure layer compositions of overseas CLT building-related institutions, companies and cases. When classifying structure layer compositions of foreign CLT buildings depending on the roles of layers. it was revealed that exterior wall structure layers were combined and organized within a sequence of external finishing, ventilation, waterproof, board, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing, sloped roof structure layers were external finishing, ventilation, waterproof, board, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing, flat roof structure layers were external finishing, ventilation, waterproof, planking wood, external insulation, waterproof, external insulation, airtightness, structure, airtightness, interior insulation, interior finishing.