• 제목/요약/키워드: Cross-sectional drawing

검색결과 35건 처리시간 0.025초

다단 이형인발공정의 중간패스 단면형상 설계에 관한 연구 (A Study on Cross Sectional Shape Design of Intermediate Pass in the Multi-Stage Shape Drawing)

  • 이재은;이태규;이상곤;김성민;김병민
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.283-289
    • /
    • 2009
  • The multi-stage shape drawing is used to obtain long shaped products with high levels of dimensional accuracy and quality. It is important to design the cross sectional shapes of the intermediate passes to meet the required dimensional accuracy of the final product in the multi-stage shape drawing. Until now, the cross sectional shapes of the intermediate passes have been designed by the experiences. It is still remained unsolved problem to design the cross sectional shapes of intermediate pass drawing dies in the multi-pass shape drawing. In this study, a new technique is proposed to design the cross sectional shapes of intermediate passes. The proposed method is applied to a multi-stage shape drawing for a LM-guide which is one of the representative shape drawing products. In order to verify the effectiveness of the proposed method, FE-simulation and experiments have been carried out. The dimensional accuracy of the proposed method is compared with that of the conventional shape drawing process designed by the industrial engineers.

스플라인 이형인발을 위한 중간 다이 단면형상 설계 (Design of the Cross Sectional Shape of Intermediate Die for Shaped Drawing of Spline)

  • 이재은;이태규;이상곤;김병민
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.627-632
    • /
    • 2008
  • The cross sectional shape of intermediate die is one of important parameters to improve dimensional accuracy of final product in shaped drawing process. Until now, it has been designed by the experience or trial and error of the expert. In this study, the cross sectional shape of intermediate die for spline shape is determined by the electric fields analysis and scale factor method. The result of the electric fields analysis and scale factor method have been compared with that of the expert method. The effects of cross sectional shape on the dimensional accuracy were investigated by using FE-simulation. And then the multi-stage shaped drawing experiments were performed to verify the results of FE-simulation. As a result, the cross sectional shape from the electric fields analysis and scale factor method had the good dimensional accuracy. These two methods can be used for the method to obtain the cross sectional shape of intermediate die in shaped drawing process.

연신공정 조건이 소모연신사의 물성에 미치는 영향 (I) (The Effects of Drawing Conditions on Physical Properties of the Drawn Worsted Yarns (I))

  • 한원희;김승진;김상룡
    • 한국염색가공학회지
    • /
    • 제22권1호
    • /
    • pp.51-60
    • /
    • 2010
  • This research works on the effects of drawing conditions on the physical properties of the drawn worsted yarns. The drawn worsted yarns were made by the yarn drawing system under various drawing conditions such as concentration of reducing agent, draw ratio, setting time of drawn yarn, and concentration of oxidizing agent. The drawn worsted yarns from 2/80Nm to 2/90Nm were obtained from 2/60Nm worsted yarns, the surface and cross-sectional shapes and tensile properties of these various specimens were measured and discussed with the various drawing conditions. The drawing of worsted yarn made constituent wool fiber scratched and made it changing to polygonal cross-sectional shape. The tenacity and modulus were increased with draw ratio and concentration of reducing agent. And tensile strain was increased with draw ratio, which decreased with concentration of reducing agent.

의궤에 기록된 건축도(建築圖) 물매(勿每, 水每)에 관한 연구 - 단면도로서의 가능성을 중심으로 - (A Study on the Mulmae, Architectural Drawing Recorded on Uigwes - Focusing on the Possibility as a Cross-sectional Drawing -)

  • 이상명
    • 건축역사연구
    • /
    • 제29권6호
    • /
    • pp.57-65
    • /
    • 2020
  • This study covered the Mulmae, architectural drawing recorded on Yeonggeon-uigwes and Sanleung-uigwes during the late Joseon Dynasty. In uigwes, the term 'Mulmae' was used as a mixture until the 17th century, but from the 18th century, the term 'Mulmae(勿乙每, 勿每, 水每)' was unified into 'Mulmae(水每)'. The paper of the Mulmae was made to be used during the construction period by using a thick oil paper called Yudun. Four Yudun were connected, and its size was 197.4×141cm, which was rather large. The Yingzaofashi(營造法式) of Song Dynasty describes how to draw a longitudinal section on a scale of 1/10. The scale of 1/10 was the maximum when comparing the size of the Mulmae with the buildings in uigwes. A sectional drawing of Gongpo in Geunjeongjeon was drawn on a scale of 1/10. There is a testimony that a senior carpenter drew a cross-section on a scale of 1/10. Therefore, it was determined that the scale of the longitudinal section drawn on the Mulmae paper was 1/10. The term 'the Mulmae' was used equally by carpenter active in Japanese colonial era. The scope of the painting was clarified from pillar to rafter. Uigwes records that the Mulmae was made for wood processing. Through this, it can be understood that the Mulmae painted the entire structure as a longitudinal section.

파이프 인발 각도에 따른 기계적 효과 및 재료에 따른 감소율에 관한 연구 (Mechanical Effects of Pipe Drawing Angle and Reduction Rate on Material)

  • 서영진
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.8-13
    • /
    • 2020
  • Seamless pipes are fabricated by drilling a hole in a cylindrical material and drawing the material to the desired diameter. These pipes are used in environments where high reliability is required. In this study, the pipe drawing process was simulated using DEFORM, a commercial finite element method (FEM) analysis program. The outer diameter of the steel cylinder used herein before drawing was 70 mm, and the target outer diameter was 58 mm. The drawing process consisted of two stages. In this study, the effect of cross-sectional reduction rate on the pipe was investigated by varying the cross-sectional reduction rate in each step to achieve the target outer diameter. The results of this study showed that the first section reduction rate of 26% and the second section reduction rate of 13.9% caused the lowest damage to the material. Moreover, the FEM simulation results confirmed the influence of the drawing die angle on the pipe drawing process. The drawing die angles of 15° in the first step and 9° in the second step caused the least damage to the material.

이형인발공정 하중예측에 관한 연구 (Prediction of Drawing Load in the Shape Drawing Process)

  • 이태규;이찬주;이상곤;김병민
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.323-328
    • /
    • 2009
  • The prediction of drawing load is very important in the drawing process. However, it is not easy to calculate the drawing load for the shape drawing process through a theoretical model because of a complex arbitrary final cross section shape. The purpose of this study is to predict drawing load in shape drawing process. The cross section of product is divided with small angle as much as similar with fan-shape. The drawing load of each section was calculated by theoretical model of round to round drawing process. And the shape drawing load was determined by summation of drawing load of each section. The effectiveness of the proposed method was verified through the FE analysis and shape drawing experiment. It had a good agreement between proposed method, FE analysis and experiment within about 3% errors.

상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화 (Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel)

  • 배성준;김정훈;홍성박;홍성규;남궁정;이광석
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

중공형 LM-Guide Rail의 치수정밀도 향상을 위한 형상인발 금형 설계 (Die Design for Shape Drawing to Improve the Dimensional Accuracy of a Hollow LM-Guide Rail)

  • 박정현;이경훈;김성민;김희중;김성진;김병민
    • 소성∙가공
    • /
    • 제24권5호
    • /
    • pp.340-347
    • /
    • 2015
  • Multi-pass shape drawing is used to manufacture long products of arbitrary cross-sectional shapes. This process allows smooth surface finishes and closely controlled dimensions of the cross-sectional shape. Tube shape drawing for hollow type products provides material savings and weight reduction. The intermediate die shapes are very important in multi-pass tube shape drawing. In the current paper, the design method for the intermediate dies in a tube shape drawing process is developed using a die offset for corner filling (DOCF) method. Underfill defects are related to the radial velocity distribution of each divided section in the deformation zone. The developed intermediate die shape design was applied to the two-pass tube shape drawing with fixed mandrel for manufacturing a hollow linear motion (LM) guide rail. The proposed design method led to uniform and steady metal flow at each divided section. FE-simulations and experiments were conducted to validate the effectiveness of the proposed method in multi-pass tube shape drawing process.

2단 튜브인발 공정시 인발변형률 배분모델 재발 (Drawing Strain Distribution Model for the Two-Pass Drawing Process)

  • 이동활;정우창;문영훈
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.671-677
    • /
    • 2004
  • For the large reduction in tube cross section, the tube drawing process is usually performed by two successive passes, so called first drawing and second drawing. In multi-pass drawing process, the reduction balance is important to prevent drawing cracks. Therefore in this study, the model for uniform reduction distribution in two-pass drawing process has been developed on the basis of cross sectional variation of drawn tube. For the given product geometry the model provides optimal diameter and thickness that can evenly distribute drawing reductions. The capability of model is well confirmed by finite element analysis of tube drawing process. Criteria curves at various limit strains to determine whether the drawn tube would fail during drawing process are also proposed by using newly developed model.

비대칭 사다리꼴 단면 선재의 다단 인발 공정설계 (Process Design of Multi-Pass Shape Drawing of Wire with Asymmetric Trapezoid Profiles)

  • 지세인;이경훈;홍리석;정진영;김종성;김병민
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.187-193
    • /
    • 2015
  • The objective of the current study is to determine cross-sectional profile of intermediate dies in order to improve the plastic strain homogeneity which directly affects not only the dimensional accuracy but also the mechanical properties of final product by redesigning the intermediate dies using the conventional electric field analysis (EFA) method. Initially, the multi-pass shape wire drawing was designed by using the equivalent potential lines from EFA. The area reduction ratio was calculated from the number of passes in multi-pass shape wire drawing but constrained by the capacity of the drawing machine and the drawing force. In order to compensate for a concentration of strain in a region of the cross section of the wire, the process for multi pass wire drawing from initial round material to an intermediate die was redesigned again using the electric field analysis. Both drawing process designs were simulated by the finite element method in which the strain distribution and standard deviation plastic strain of the cross section of drawn wires were examined.