• Title/Summary/Keyword: Cross-section plane

Search Result 223, Processing Time 0.026 seconds

Enhancement of the buckling strength of glass beams by means of lateral restraints

  • Belis, J.;Impe, R. Van;Lagae, G.;Vanlaere, W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.495-511
    • /
    • 2003
  • New material applications and transparency are desired by contemporary architects. Its superb transparency and high strength make glass a very suitable building material -in spite of its brittleness- even for primary load bearing structures. Currently we will focus on load bearing glass beams, subjected to different loading types. Since glass beams have a very slender, rectangular cross section, they are sensitive to lateral torsional buckling. Glass beams fail under a critical buckling load at stresses that lie far below the theoretical simple bending strength, due to the complex combination of torsion and out-of-plane bending, which characterises the instability phenomenon. The critical load can be increased considerably by preventing the upper rim from moving out of the beam's plane. Different boundary conditions are examined for different loading types. The load carrying capacity of glass beams can be increased three times and more using relatively simple, cheap lateral restraints.

Consideration of Surveying the Site for Lighthouse in Harbor Plan (항만계획에 있어서 등대부지측량의 고찰)

  • 장용구;이중우;강인준;이호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.225-233
    • /
    • 1999
  • Harbor design and construction plan in Korea becomes the most hot issue both in the Maritime Affairs and Fisheries Office and in the related port industries. Production of the plane and cross section maps together with the profile map for harbor project is done firstly and is important in all procedure because it is the most basic datum in counting the constructional expense for determination of the area and capacity. As the expense assigned on surveying part among the total expenses of harbor planning and construction in Korea is very small, it is difficult to make exact maps. Moveover, because the method used to make such maps is mostly traditional surveying such as plane table surveying , offset surveying, stadia surveying and level surveying, etc, it is difficult to get precise three dimensional maps. Therefore, for making more precise map in the harbor project, we have to use the newest surveying equipment. This study discusses the method of old surveying and recent surveying used for the three dimensional map of the site for lighthouse which gives navigational aids for the in-and out-bound ships. The authors are proposing a method for more precise three dimensional positioning in this study.

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

Seismic Response Analysis of Twisted Buildings with Three Planar Shapes (세 가지 평면 형상에 따른 비틀림 비정형 빌딩구조물의 지진응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, a twisted shape structure with an elevation form favorable to the resistance of vibration caused by wind loads is selected from among the forms of high-rise buildings. The analytical model is a square, triangular, and hexagonal plane with a plane rotation angle of one degree from 0 to 3 degrees per each story. As a result of the analysis, as the twist angle increased, story drift ratio is increased. Responses with different eccentricity rates were shown by analytical models. Therefore planar shapes designed symmetrically to the horizontal axis of X and Y are considered advantageous for eccentricity and torsion deformation. In the case of the bending moment of the column, the response was amplified in the column supporting the base floor, the roof floor, the floor in which the cross-section of the vertical member changes, and the floor having the same number of nodes as the base floor. Finally, the axial force response of the column is determined to be absolutely affected by the gravity load compared to the lateral load.

Large Deflection and Elastoplastic Analysis of the Plane Framed Structure Using Isoparametric Curved Beam Element (Isoparametric 곡선(曲線) 보요소(要素)를 이용한 평면(平面)뼈대 구조물(構造物)의 대변형(大變形) 및 탄소성(彈塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Shin, Hyun Mock;Lee, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.41-49
    • /
    • 1993
  • This paper presents a geometrically non-linear and elastoplastic F.E. formulation using a total Lagrangian approach for the two dimensional isoparametric curved beam elements. The beam element is derived by using plane stress elements. The basic element geometry is constructed using the coordinates of the nodes on the element center line and the nodal point normals. The element displacement field is described using two translations of the node on the center line and a rotation about the axes normal to the plane containing the center line of the element. The layered approach is used for the elastoplastic analysis of the plane framed structure with the arbitrary cross section. The iterative load or displacement incremental method for non-linear finite element analysis of the frame structure is used. Numerical examples are presented to demonstrate the behavior and the accuracy of the proposed beam element for geometric and elastoplastic non-linear applications. Comparisons made with present theory and other published data show that tilt' beam element products accurate results with good convergence characteristics.

  • PDF

Quantitative Evaluation of Remote Field Eddy Current Defect Signals (배관 결함부 원거리장 와전류 신호 정량화 연구)

  • Jeong, Jin-Oh;Yi, Jae-Kyung;Kim, Hyoung-Jean
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.555-561
    • /
    • 2000
  • The remote field eddy current (RFEC) inspection was performed on the ductile cast iron pipes with nominal outer diameter of 100mm, which were machined with various shapes and sizes of defects. Ductile cast iron pipes which are used as water supply pipe have the non-uniform thickness and asymmetric cross section due to relatively high degree of allowable errors during the manufacturing processes. These characteristics of ductile cast in pipes cause the long range background noises in RFEC signals along the pipe. In this study, tile machined defects in pipes were effectively classified by the moving window average (MWA) method which eliminated the long-range noise. The voltage plane polar plots (VPPP) method was used to quantitatively evaluate the depth and circumferential degree of defects. The VPPP signatures showed that the angle between defect signature and the normalized in-phase component on the VPPP is linear to the depth of defects. The nondestructive RFEC technique proved to be capable of quantitatively evaluating the machined defects of underground water supply pipe.

  • PDF

Influence of stiffened hangers on the structural behavior of all-steel tied-arch bridges

  • Garcia-Guerrero, Juan M.;Jorquera-Lucerga, Juan J.
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.479-495
    • /
    • 2019
  • In tied-arch bridges, the way the arch and the deck are connected may become crucial. The deck is usually suspended from hangers made out of steel pinned cables capable of resisting axial forces only. However, a proper structural response may be ensured by fixing and stiffening the hangers in order to resist, additionally, shear forces and bending moments. Thus, this paper studies the effect of different pinned and stiffened hanger arrangements on the structural behavior of the tied-arch bridges, with the intention of providing designers with useful tools at the early steps of design. Longitudinally and transversally stiffened hangers (and the effect of hinges at the hangers and their locations) are studied separately because the in-plane and the out-of-plane behavior of the bridge are uncoupled due to its symmetry. As a major conclusion, regarding the in-plane behavior, hangers composed of cables (either with vertical, $Nielsen-L\ddot{o}hse$ or network arrangements) are recommended due to its low cost and ease of erection. Alternatively, longitudinally stiffened hangers, fixed at both ends, can be used. Regarding the out-of-plane behavior, and in addition to three-dimensional arrangements of cables, of limited effectiveness, transversally stiffened hangers fixed at both ends are the most efficient arrangement. A configuration almost as efficient and, additionally, cheaper and easier to build can be achieved by locating a hinge at the end corresponding to the most flexible structural element (normally the arch). Its efficiency is further improved if the cross-section tapers from the fixed end to the pinned end.

Flexural behaviour of steel plate-masonry composite beams

  • Jing, Deng-Hu;Cao, Shuang-Yin;Shi, Lei
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.123-137
    • /
    • 2012
  • Steel plate-masonry composite structure is a newly-developed type of structural technique applicable to existing masonry buildings by which the load-bearing walls can be removed for large spaces. This kind of structure has been used in practice for its several advantages, but experimental investigation on its elements is nearly unavailable in existing literature. This paper presents an experimental study on the flexural behaviour of four steel plate-masonry composite beams loaded by four-point bending. Test results indicate that failure of the tested beams always starts from the local buckling of steel plate, and that the tested beams can satisfy the requirement of service limit state. In addition, the assumption of plane section is still remained for steel plate prior to local buckling or steel yielding. By comparative analyses, it was also verified that the working performance of the beam is influenced by the cross-section of steel plate, which can be efficiently enhanced by epoxy adhesive rather than cement mortar or nothing at all. Besides, it was also found that the contribution of the encased masonry to the flexural capacity of the composite beam cannot be ignored when the beam is injected with epoxy adhesive.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Visualization of Underexpanded Jet Structure from Square Nozzle

  • Tsutsumi, Seiji;Yamaguchi, Kazuo;Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.408-413
    • /
    • 2004
  • Numerical and experimental investigation were car-ried out to clarify the flow structure of underexpanded jet from a square nozzle. The square nozzle rep-resents one of the clustered combustors of a linear aerospike engine. From the numerical results, the three-dimensional shock wave of the underexpanded square jet was found to be composed of two shocks. One is the intercepting shock which corresponds to the shock observed in two-dimensional planar jet. The other is the recompression shock divided into two types. The expansion fans coming from the nozzle edges interact with each other at the comers of the nozzle exit, and overexpanded regions are generated. Therefore one of the two recompression shocks is formed at the comers of the nozzle exit behind the overexpanded regions. As the jet goes downstream, the overexpanded regions grow larger to coalesce at the symmetry planes. Then, the other type of the recompression shock is generated. The three-dimensional shock structure formed by the intercepting shock and the recompression shocks dominates the expansion of the jet boundary. The shock detection algorithm us-ing CFD results was developed to reveal the relation between the shock waves and the jet boundary, and it was found that the cross-sectional jet shape becomes cross-shape. The key features observed in the numerical investigation were verified by the experimental results. The shock structure at the diagonal plane was in good agreement with the experimental schlieren images. Moreover, the cross-sections visualized by the Mie scattering method confirmed that the cross-section of the jet becomes cross-shape.

  • PDF