• Title/Summary/Keyword: Cross-over cognitive radio networks

Search Result 5, Processing Time 0.02 seconds

Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks

  • Hu, Hang;Xu, Youyun;Liu, Zhiwen;Li, Ning;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3061-3080
    • /
    • 2012
  • To improve the sensing performance, cooperation among secondary users can be utilized to collect space diversity. In this paper, we focus on the optimization of cooperative spectrum sensing in which multiple cognitive users efficiently cooperate to achieve superior detection accuracy with minimum sensing error probability in multiple cross-over cognitive radio networks. The analysis focuses on two fusion strategies: soft information fusion and hard information fusion. Under soft information fusion, the optimal threshold of the energy detector is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. Under hard information fusion, the optimal randomized rule and the optimal decision threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows better performance on improving the final false alarm and detection probability simultaneously. By simulations, our proposed strategy optimizes the sensing performance for each cognitive user which is randomly distributed in the multiple cross-over cognitive radio networks.

Cross-layer Video Streaming Mechanism over Cognitive Radio Ad hoc Information Centric Networks

  • Han, Longzhe;Nguyen, Dinh Han;Kang, Seung-Seok;In, Hoh Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3775-3788
    • /
    • 2014
  • With the increasing number of the wireless and mobile networks, the way that people use the Internet has changed substantively. Wireless multimedia services, such as wireless video streaming, mobile video game, and mobile voice over IP, will become the main applications of the future wireless Internet. To accommodate the growing volume of wireless data traffic and multimedia services, cognitive radio (CR) and Information-Centric Network (ICN) have been proposed to maximize the utilization of wireless spectrum and improve the network performance. Although CR and ICN have high potential significance for the future wireless Internet, few studies have been conducted on collaborative operations of CR and ICN. Due to the lack of infrastructure support in multi-hop ad hoc CR networks, the problem is more challenging for video streaming services. In this paper, we propose a Cross-layer Video Streaming Mechanism (CLISM) for Cognitive Radio Ad Hoc Information Centric Networks (CRAH-ICNs). The CLISM included two distributed schemes which are designed for the forwarding nodes and receiving nodes in CRAH-ICNs. With the cross-layer approach, the CLISM is able to self-adapt the variation of the link conditions without the central network controller. Experimental results demonstrate that the proposed CLISM efficiently adjust video transmission policy under various network conditions.

An Experimental Implementation of a Cross-Layer Approach for Improving TCP Performance over Cognitive Radio Networks

  • Byun, Sang-Seon
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • In cognitive radio networks (CRNs), the performance of the transmission control protocol (TCP) at the secondary user (SU) severely drops due to the mistrigger of congestion control. A long disruption is caused by the transmission of primary user, leading to the mistrigger. In this paper, we propose a cross-layer approach, called a CR-aware scheme that enhances TCP performance at the SU. The scheme is a sender side addition to the standard TCP (i.e., TCP-NewReno), and utilizes an explicit cross-layer signal delivered from a physical (or link) layer and the signal gives an indication of detecting the primary transmission (i.e., transmission of the primary user). We evaluated our scheme by implementing it onto a software radio platform, the Universal Software Radio Peripheral (USRP), where many parts of lower layer operations (i.e., operations in a link or physical layer) run as user processes. In our implementation, we ran our CR-aware scheme over IEEE 802.15.4. Furthermore, for the purpose of comparison, we implemented a selective ACK-based local recovery scheme that helps TCP isolate congestive loss from a random loss in a wireless section.

Improving TCP Performance Over Cognitive Radio Networks (인지 무선 환경에서 TCP 성능 향상)

  • Byun, Sang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.6
    • /
    • pp.353-360
    • /
    • 2014
  • In cognitive radio networks (CRNs), SU (secondary user)'s transmissions are frequently disrupted by PU (primary user)'s transmission. Therefore SU expereiences consecutive retransmission timeout and its exponential backoff, and subsequently, the TCP of SU does not proceed with the transmission even after the disruption is over or the SU succeeds to hold an idle channel. In order to solve this problem, we propose a cross-layer approach called TCP-Freeze-CR. Moreover we consider a practical scenario where either secondary transmitter (ST) or secondary receiver (SR) detects PU's transmission, which results in the need of spectrum synchronization mechanism. All of our proposals are implemented and verified with a real CRN testbed consisting of 6 software radios called USRP. The experimental results illustrate that standard TCP suffers from significant performance degradation and show that TCP-Freeze-CR greatly mitigates the degradation.

Improving TCP Performance over Cognitive Radio Networks using Cross-Layer Approach (크로스레이어 기법을 통한 인지무선 환경에서 TCP 성능 개선)

  • Byun, Sang-Seon
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.319-321
    • /
    • 2015
  • 인지무선네트워크 (Cognitive Radio Networks) 환경에서 스펙트럼의 원소유주인 1차사용자가 전송을 개시하는 경우, 같은 채널을 사용하는 2차사용자의 TCP (Transmission Control Protocol) 는 전송 불능 상태가 되어 심각한 성능저하가 발생한다. 이러한 성능저하는 1차사용자의 등장으로 인해 채널이 사용 불가능 해지는 상태를 패킷 손실로 판단하여 재전송 타임아웃이 발생하기 때문에 발생된다. 우리는 이 문제를 링크 또는 물리 계층 (하위계층) 과 TCP간의 크로스레이어링을 통하여 해결하고자 한다. 하위 계층은 1차사용자의 전송이 감지되면, 이를 TCP에게 시그널링하고, TCP는 이를 통해 재전송 타이머와 혼잡 윈도우를 고정시키고, 패킷 전송을 중단하도록 한다. 또, 하위계층이 가용 채널을 감지하게 되면, 재차 TCP에게 시그널링을 함으로써, 전송이 신속하게 재개되도록 한다. 제안하는 방법은 실제 USRP(Universal Software Radio Peripheral)에 구현하여 성능의 향상을 검증한다.