• 제목/요약/키워드: Cross-linking reagents

검색결과 3건 처리시간 0.018초

Preparation and Characterization of Pore-filled Membrane Based on Polypropylene with Poly(vinylbenzyl chloride) by Using in-situ Cross-linking Technique

  • Kwon, Byeong-Min;Ko, Moon-Young;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • 제10권1호
    • /
    • pp.13-19
    • /
    • 2008
  • Water softening is a very promising field for membranes and especially ultra low pressure membranes. Nanofiltration membranes based on pore-filling technology was prepared by using a new technique: the in-situ cross-linking. This route involves introducing a pre-formed polymer into the pores of a host membrane and then locking the polymer in the pores by in-situ cross-linking with an appropriate reagent. By this way, it is possible to make robust and competitive, pore-filled, anion-exchange membranes with excellent control over the properties of the incorporated gel without affecting the host membrane. In this paper, the possibilities of tuning such membranes for ultra low pressure water softening was examined by altering pore-filling chemistry (by changing cross-linking and aminating reagents). The results showed that tuning the chemistry of the pore-filling has important effects. In particularly, it had been shown that the correct selection of cross-linking reagent was not only essential to get pore-filled membranes but it could control their properties. Moreover, the aminating reagent could improve membrane performance. It was found that an increase in hydrophobicity could improve the Darcy permeability.

Increased Association of ${\alpha}$-synuclein to Perturbed Cellular Membranes

  • Kim, Yoon-Suk;Lee, Seung-Jae
    • 대한의생명과학회지
    • /
    • 제17권2호
    • /
    • pp.167-171
    • /
    • 2011
  • [ ${\alpha}$ ]synuclein (${\alpha}$-syn) is implicated in the pathogenesis of Parkinson's disease (PD) and other related diseases. We have previously reported that ${\alpha}$-syn binds to the cell membranes in a transient and reversible manner. However, little is known about the physiologic function and/or consequence of this association. Here, we examined whether chemically induced perturbations to the cellular membranes enhance the binding of ${\alpha}$-syn, based on hypothesis that ${\alpha}$-syn may play a role in maintenance of membrane integrity or repair. We induced membrane perturbations or alterations in ${\alpha}$-syn-overexpressing human neuroblastoma cells (SH-SY5Y) by treating the cells with hydrogen peroxide ($H_2O_2$) or oleic acid. In addition, membranes fractionated from these cells were perturbed by treating them with proteinase K or chloroform. Dynamic interaction of ${\alpha}$-syn to the membranes was analyzed by the chemical cross-linking assay that we developed in the previous study. We found that membrane interaction of ${\alpha}$-syn was increased upon treatment with membrane-perturbing reagents in a dose and time dependent manner. These results suggest that perturbations in the cellular membranes cause increased binding of ${\alpha}$-syn, and this may have significant implication in the physiological function of ${\alpha}$-syn in cells.

Tissue integration patterns of non-crosslinked and crosslinked collagen membranes: an experimental in vivo study

  • Xiang Jin;Jin-Young Park;Jung-Seok Lee;Ui-Won Jung;Seong-Ho Choi;Jae-Kook Cha
    • Journal of Periodontal and Implant Science
    • /
    • 제53권3호
    • /
    • pp.207-217
    • /
    • 2023
  • Purpose: Non-crosslinked and crosslinked collagen membranes are known to exhibit distinct degradation characteristics, resulting in contrasting orientations of the adjacent tissues and different biological processes. The aim of this study was to conduct a histomorphometric assessment of non-crosslinked and crosslinked collagen membranes regarding neovascularization, tissue integration, tissue encapsulation, and biodegradation. Methods: Guided bone regeneration was performed using either a non-crosslinked (BG) or a crosslinked collagen membrane (CM) in 15 beagle dogs, which were euthanized at 4, 8, and 16 weeks (n=5 each) for histomorphometric analysis. The samples were assessed regarding neovascularization, tissue integration, encapsulation, the remaining membrane area, and pseudoperiosteum formation. The BG and CM groups were compared at different time periods using nonparametric statistical methods. Results: The remaining membrane area of CM was significantly greater than that of BG at 16 weeks; however, there were no significant differences at 4 and 8 weeks. Conversely, the neovascularization score for CM was significantly less than that for BG at 16 weeks. BG exhibited significantly greater tissue integration and encapsulation scores than CM at all time periods, apart from encapsulation at 16 weeks. Pseudoperiosteum formation was observed in the BG group at 16 weeks. Conclusions: Although BG membranes were more rapidly biodegraded than CM membranes, they were gradually replaced by connective tissue with complete integration and maturation of the surrounding tissues to form dense periosteum-like connective tissue. Further studies need to be performed to validate the barrier effect of the pseudoperiosteum.