• 제목/요약/키워드: Cross-flow type

검색결과 301건 처리시간 0.029초

진동교반조의 기하형상에 따른 유동상태와 혼합한계회전수 (Flow Patterns and Critical Circulation Frequency for Mixing in Shaking Vessels with Various Geometry)

  • 이영세;김문갑;김종식;우 타카후미;카도 요시히토
    • 한국산업융합학회 논문집
    • /
    • 제6권1호
    • /
    • pp.49-56
    • /
    • 2003
  • Based on the flow patterns of cylindrical vessel, the flow patterns of conical vessel, spherical vessel, rectangular vessel and cylindrical vessel with baffles were visualized by a trace method using aluminum powder. In addition, the correlations of the critical circulating frequency for mixing were derived from the experimental results. The conical and spherical vessels which have circular cross sections were same effective as cylindrical vessel for the shake mixing due to developing the rotational flow. Both a rectangular vessel and a cylindrical vessel with baffles should not be adapted for shake mixing because of not developing rotational flows in these type of vessels.

  • PDF

PTC 서미스터를 이용한 유속계의 성능향상에 관한 연구 (Research on Improvement of Performance of Anemometer Using PTC Thermistor)

  • 윤준용;조남규;김진래;성낙원;김광진
    • 한국유체기계학회 논문집
    • /
    • 제3권4호
    • /
    • pp.15-21
    • /
    • 2000
  • An anemometer employing the bulk PTC thermistor as the sensing element is investigated in this study. The numerical and experimental works are carried out to improve the sensitivity problem of the element by focusing fluid dynamics point of view. The typical shape of the sensing element has been used as a rectangular type, but this shape has a sensitivity problem because of flow separations on the sharp edge when the flow direction is different from that of the sensing element. In order to reduce the reading error, the installer has to be very careful about the flow direction. The reading error fluctuation by time as well as the sensitivity problem can be improved considerably through this study. It can be concluded that the small change of the sensor shape can improve the performance of the flow sensor.

  • PDF

열선유속계에 의한 180.deg.곡관을 갖는 직사각 단면덕트에서의 난류유동 특성의 측정 (Measurement of turbulent flow characteristics of a rectangular duct with a 180.deg. bend by hot wire anemometer)

  • 박호영;유석재;최영돈
    • 대한기계학회논문집
    • /
    • 제14권3호
    • /
    • pp.734-746
    • /
    • 1990
  • 본 연구에서는 문등이 제안한 방법에 의하여 직사각형 단면의 180˚곡관유동 에서 속도분포와 난류성분을 측정하여 단면의 종횡비 변화에 따른 유동특성과 난류특 성의 변화를 고찰하였다.

광력을 이용한 입자 분리 장치 (Particle Separator using Radiation Force)

  • 김상복;윤상열;김상수;성형진
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.55-58
    • /
    • 2007
  • To improve the conventional optical chromatography, the continuous particle separator, the cross-type optical chromatography, is fabricated using micro-channel and fiber optics. A laser beam irradiates into the liquid solution containing particles in the perpendicular to the liquid flow direction. The different sized polystyrene latex micro-spheres, $2.0\;{\mu}m\;{\pm}\;0.02\;{\mu}m$, $5.0\;{\mu}m\;{\pm}\;0.05\;{\mu}m$, and $10.0\;{\mu}m\;{\pm}\;0.09\;{\mu}m$ diameter, are separated in cross-type optical chromatography. The separated particles are delivered to down stream in the micro-channel maintaining the retention distance continuously. The measured retention distances for different sized particles well agree with theoretical predictions.

  • PDF

$Annubar^{(R)}$형 차압유량계 형상 개선에 따른 유량 특성 연구 (A Study on Flow Rate Characteristics of a $Annubar^{(R)}$ Type Differential Pressure Flow Meter with a Shape Improvement)

  • 오대산;이충훈
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.204-210
    • /
    • 2010
  • The inner structure of the triangular separate bar (TSB) was improved to enhance the productivity of the TSB flow meter by simplifying the machining process for making the flow meter. The cross section of upstream and downstream pressure chamber in the TSB was changed from triangle to circle, which make it possible to substitute the wire cutting by drilling in the process of machining the pressure chamber. The flow rate characteristics of the flow meters was calibrated with a laminar flow meter. Six kinds of flow meters whose diameters of pressure tap for measuring pressure of both upsteam and downstream pressure chamber were different one another were made. The effects of the pressure tap diameter on the flow rate characteristics of the TSB flow meter was little. The mass flow rate characteristics of the flow meters with increasing a non-dimensional parameter which includes the gas temperature, exhaust gas pressure and differential pressure at the flow meters and atmospheric pressure shows nearly linear relationship with a correlation coefficient of R=0.998.

열적으로 성충화된 횡단류에 분류된 제트의 난류확산 거동 (II) (Turbulent Dispersion Behavior of a Jet issued into Thermally Stratified Cross Flows (II))

  • 김상기;김경천
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1434-1443
    • /
    • 1999
  • The turbulent fluctuations of temperature and two components of velocity have been measured with hot- and cold-wires in the Thermally Stratified Wind Tunnel(TSWT). Using the fin-tube heat exchanger type heaters and the neural network control algorithm, both stable ($dT/dz=109.4^{\circ}C$) and unstable ($dT/dz=-49.1^{\circ}C$) stratifications were realized. An ambient air jet was issued normally into the cross flow($U_{\infty}=1.0 m/s$) from a round nozzle(d = 6 mm) flushed at the bottom waII of the wind tunnel with the velocity ratio of $5.8(U_{jet}/U_{\infty})$. The characteristics of turbulent dispersion in the cross flow jet are found to change drastically depending on the thermal stratification. Especially, in the unstable condition, the vertical velocity fluctuation increases very rapidly at downstream of jet. The fluctuation velocity spectra and velocity-temperature cospectra along the jet centerline were obtained and compared. In the case of stable stratification, the heat flux cospectra changes Its sign from a certain point at the far field because of the restratification phenomenon. It is inferred that the main reason in the difference between the vertical heat fluxes is caused by the different length scales of the large eddy motions. The turbulent kinetic energy and scalar dissipation rates were estimated using partially non-isotropic and isotropic turbulent approximation. In the unstable case, the turbulent energy dissipation decreases more rapidly with the downstream distance than in the stable case.

CFD를 이용한 분지관 비뉴턴 해석 (PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS)

  • 황도연;유성수;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF

CFD를 이용한 분지관 비뉴턴 해석 (PULSATILE FLOW SIMULATION OF A NON-NEWTONIAN FLUID THROUGH A BIFURCATION TUBE USING THE CFD ANALYSIS)

  • 황도연;유성수;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.177-180
    • /
    • 2008
  • The objective of this study is to get simulation data about pulsatile flow of a non-Newtonian fluid through a bifurcated tube. All the process was based on CFD method, with a commercial FVM code, SC/Tetra ver. 6.0 for solving, and with CATIA R16 for generating geometries. To define a non-Newtonian fluid, the following viscous models are used; the Powell-Eyring model, the modified Powell-Eyring model, the Cross model, the modified Cross model, the Carreau model, the Carreau-Yasuda model and the modified Power Law model. The flow calculation data using each model were compared with the other data of a existing paper. Finally, the Carreau model was recognized to give the best result with the SC/Tetra code, and the succeeding simulations are made with the model. For the pulsating flow condition, the sine wave type velocity profile is given as the inlet boundary condition. To investigate the effect of geometries and mesh, the pre-test is carried out with various curvature conditions of the bifurcated corner, and then with various mesh conditions. The final process is to calculate flow variables such as the wall shear stress (WSS) and the wall shear stress gradient (WSSG). To validate all the result, the simulation is compared with the existing data of the other papers. Generally speaking, there is a noticeable difference in the maximum and minimum value of WSS. It is not sure that the values in each data are on the exactly same location. However, the overall trend is similar. The next study needs to investigate the same situation by experimental method. Furthermore, if the flow is simulated with more pulsatile conditions, more data of flow field through a bifurcated tube could be achieved.

  • PDF

회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향 (Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement)

  • 이세영;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

초등학교 교사의 복합용도계획에 관한 연구 (A Study on Design of Elementary Schoolhouse for Mixed-use Facilities)

  • 이현재;강철희
    • 한국실내디자인학회논문집
    • /
    • 제17권1호
    • /
    • pp.138-145
    • /
    • 2008
  • This study is conducted to formulate various spatial compositions for mixed-use elementary schools in order to use them as community centers. Accordingly, this study is conducted to analyze currently operating community-use elementary schools to find out about the current condition of mixed-use facilities, and the types of mixed-use facilities will be derived from the analysis. In addition, a more effective method of planning mixed-use elementary schools is investigated. By incorporating various educational curricula and teaching/learning activities, major points, which should be considered when planning elementary schools, will be suggested to effectively respond to the changes of educational environment in the future. The results show that in terms of inner traffic flow type, 9 schools out of the schools under study showed a unificated traffic flow type or a cross traffic flow type. When traffic overlaps, problems of noise, visual distraction, and decreased learning performance can appear. To prevent the conflict between areas and to manage areas effectively, each area should be differentiated by installing doors and shutters and by marking guides, and the facility used for community residents and students should also be scheduled separately to avoid time conflict. In addition, to accommodate the changes of users, flexible space planning options should be considered.