• Title/Summary/Keyword: Cross-flow turbine

Search Result 88, Processing Time 0.023 seconds

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

Performance and Flow Condition of Cross-Flow Wind Turbine with a Symmetrical Casing Having Side Boards

  • Shigemitsu, Toru;Fukutomi, Junichiro;Toyohara, Masaaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.169-174
    • /
    • 2016
  • A cross-flow wind turbine has a high torque coefficient at a low tip speed ratio. Therefore, it is a good candidate for use as a self-starting turbine. Furthermore, it has low noise and excellent stability; therefore, it has attracted attention from the viewpoint of applications as a small wind turbine for an urban district. However, its maximum power coefficient is extremely low (10 %) as compared to that of other small wind turbines. In order to improve the performance and flow condition of the cross-flow rotor, the symmetrical casing with a nozzle and a diffuser are proposed and the experimental research with the symmetrical casing is conducted. The maximum power coefficient is obtained as $C_{pmax}=0.17$ in the case with the casing and $C_{pmax}=0.098$ in the case without the casing. In the present study, the power characteristics of the cross-flow rotor and those of the symmetrical casing with the nozzle and diffuser are investigated. Then, the performance and internal flow patterns of the cross-flow wind turbine with the symmetrical casings are clarified. After that, the effect of the side boards set on the symmetrical casing is discussed on the basis of the analysis results.

Performance Analysis of a Cross Flow Hydro Turbine by Runner Blade Number (소수력발전용 횡류수차의 러너 블레이드 깃수에 따른 성능해석)

  • Choi, Young-Do;Jin, Chang-Fu;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.698-706
    • /
    • 2008
  • Performance improvement of Small hydro turbine is a very important subject to solve in the stage of introduction and development of the turbine. Cross-flow hydro turbine should be also studied more in detail for the turbine performance in order to extend the sites of application. In order to improve the turbine performance, the effect of the turbine shape on the turbine performance should be examined. Therefore, the effect of runner blade number on the turbine performance is investigated by use of a commercial CFD code. The results show that runner blade number gives remarkable effect on the efficiency and output power of the turbine. Pressure on the surface of the runner blade changes considerably by the blade number at Stage 1, but relatively small change of velocity distribution occurs in the flow passage.

Internal Flow Analysis on an Open Ducted Cross Flow Turbine with Very Low Head

  • Wei, Qingsheng;Hwang, Yeong-Cheol;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.67-71
    • /
    • 2014
  • Recently, the cross flow turbine attracts more and more attention for its good performance over a large operating regime at off design point. This study adopts a very low head cross flow turbine that has barely been studied before, and investigates the effect of air layer on the performance of the cross flow turbine. As open duct is applied in this study and free surface model is used between the air layer and water, an engineering definition of efficiency, instead of traditional definition of efficiency, is used. As torque at the runner fluctuates up and down at a reasonable limit, statistical method is used. Pressure and water volume fraction contours are shown to present the characteristics of air-water flow. With constant air suction in the runner chamber, the water level gradually drops below the runner and efficiency of the turbine can be raised by 10 percent. All considered, the effect of air layer on the performance of turbine is considerable.

Application of Micro Cross-Flow Turbine to Water Supply System (마이크로 관류수차의 상수도 관로시스템 적용에 관한 연구)

  • Choi Young-Do;Kurokawa Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.36-43
    • /
    • 2006
  • Recently, micro hydropower and it's useful utilization are taking a growing interest as a countermeasure of global worming by carbon dioxide and exhaustion of fossil fuel. The purpose of this study is to investigate the possibility of extracting micro hydropower wasted by a valve in water supply system using micro cross-flow hydraulic turbine. In order to fulfill the functions of controlling flow rate and pressure in substitute for the valve, air and water are supplied into an air suction hole which is installed on the side wall of micro cross-flow hydraulic turbine. The results show that in case of supplying a lot of air into the air suction hole, about 50% of flow rate and relatively high value of loss coefficient are controlled by the turbine. Moreover, including high possibility of applying the micro cross-flow turbine to water supply system, extended application of the turbine to the water discharge system of drainage and irrigation canal.

A Numerical Study on Solidity Characteristics of the Cross-flow Power Turbine(CPT) (횡류형 파워 터빈(CPT)에서 솔리디티 영향에 관한 수치해석 연구)

  • Chung, Kwang-Seop;Kim, Chul-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.562-566
    • /
    • 2010
  • Wind energy is one of the most general natural resources in the world. However, as of today, generating electricity out of wind energy is only available from big wind generator, Furthermore, an axial-flow turbine is the only way to produce electricity in the big wind generator. This paper is for the guidance of drawing impact fact about power turbine using cross-flow type transferring wind energy to electricity energy. It will find the ideal value which enables to make cross-flow power turbine(CPT) using computational fluid dynamics(CFD) code. This study tries to analyze the "Solidity" characteristics. We can find out turbine-blade number through CFD. CFD is using "Fluent_ver 6.3.16", and the data from its result will judge fan-blade performance through specific torque and specific power from each "Solidity" model. Based upon the above, we will make cross-flow power turbine of multi-blade centrifugal fan instead of axial-flow type.

Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine (횡류수차 노즐형상이 성능과 내부유동에 미치는 영향)

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Air Layer Effect on the Performance Improvement of a Cross-Flow Hydro Turbine

  • Choi, Young-Do;Shin, Byeong-Rog;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.37-43
    • /
    • 2010
  • The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively. The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

Shape Effect of Inlet Nozzle and Draft Tube on the Performance and Internal Flow of Cross-Flow Hydro Turbine

  • Choi, Young-Do;Son, Sung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.351-357
    • /
    • 2012
  • Small hydropower is a reliable energy technology to be considered for providing clean electricity generation. Producing electrical energy by small hydropower is the most efficient contribution to renewable energy. Cross-flow turbine is adopted primarily because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to investigate the effect of inlet nozzle shape on the performance and internal flow of a cross-flow turbine for small hydropower by CFD analysis. Moreover, the shape effect of draft tube has been investigated according to modified shapes of the length and the diffuse angle. The results show that relatively narrow and converging inlet nozzle shape gives better effect on the performance of the turbine.