• Title/Summary/Keyword: Cross-coupling reaction

Search Result 64, Processing Time 0.024 seconds

Synthesis of Neopentyl Biphenylsulfonates Using the Suzuki-Miyaura Reaction

  • Cho, Chul-Hee;Kim, Chul-Bae;Sun, Myung-Chul;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1632-1636
    • /
    • 2003
  • Palladium-catalyzed cross-coupling reactions of neopentyloxysulfonylphenyl bromides with arylboronic acids provided a variety of neopentyl biphenylsulfonates in good yields. 2-Bromo- and 4-bromobenzenesulfonates underwent the coupling reaction more rapidly than 3-bromobenzenesulfonate, while chlorobenzenesulfonate did not produce the coupling product under the standard reaction conditions.

Formal Synthesis of Lespedezol $A_1$ via Versatile Palladium-Catalyzed Cross-Coupling of Diazochromanone with Arylboronic Acid (디아조크로마논과 보론산의 팔라듐 촉매하 결합반응을 이용한 Lespedezol $A_1$의 합성)

  • Han, Young Taek
    • YAKHAK HOEJI
    • /
    • v.57 no.5
    • /
    • pp.357-361
    • /
    • 2013
  • A formal synthesis of Lespedezol $A_1$ has been accomplished. The key feature of this synthesis involves an efficient and powerful palladium-catalyzed cross coupling reaction of diazocarbonyl compound with bis(benzyloxy)phenylboronic acid for the key 3-aryl-chromen-4-one intermediate, which was difficult to be prepared by Suzuki coupling reaction in the previous study. The versatile and efficient synthetic procedure would facilitate synthesis of pterocarpenes and their derivatives.

Synthesis of Palladium Nanoparticles Encapsulated in Phosphine Ligand-Grafted Mesoporous Silicas and Their Application to Suzuki Cross-Coupling Reaction (팔라듐 나노입자가 담지된 메조포러스 실리카의 제조와 이를 이용한 Suzuki Cross-Coupling 반응의 적용연구)

  • Kim, Sang-Wook;Joo, Jin
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • Phosphine ligand-grafted mesoporous silica materials with large pores were prepared for the ligand-modified heterogeneous Pd nanocatalysts. New heterogeneous catalytic system was developed using palladium nanoparticles encapsulated in phosphine ligand-grafted mesoporous silica. The catalyst showed good catalytic activities for Suzuki cross-coupling using bromobenzene derivatives due to excellent phosphine ligand effects. Catalytic results showed nanoparticie catalysts can be recycled twice with decreased yields.

Heterogeneous Suzuki Cross-Coupling Reaction Catalyzed by Magnetically Recyclable Nanocatalyst

  • Choi, Kwang-Hyun;Shokouhimehr, Mohammadreza;Sung, Yung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1477-1480
    • /
    • 2013
  • The Suzuki cross-coupling reactions proceeded in excellent yields when it was catalyzed by magnetically recyclable nanocatalyst. This nanocatalyst provided very high catalytic activity with low loading level (1 mol %), because the palladium nanoparticles were so small in size (~2 nm) and located on the surface of the nanocomposite. It was also easily recovered from the reaction mixture using a magnet and reused for six consecutive cycles.

Coriolis Coupling Influence on the H+LiH Reaction

  • Zhai, Hongsheng;Li, Wenliang;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.151-157
    • /
    • 2014
  • We have reported the reaction probability, integral reaction cross section, and rate constant for the title system calculated with the aid of a time-dependent wave packet approach. The ab initio potential energy surface (PES) of Prudente et al. (Chem. Phys. Lett. 2009, 474, 18) is employed for the purpose. The calculations are carried out over the collision energy range of 0.05-1.4 eV for the two reaction channels of H + LiH ${\rightarrow}$ Li + $H_2$ and $H_b$ + $LiH_a$ ${\rightarrow}$ $LiH_b$ + $H_a$. The Coriolis coupling (CC) effect are taken into account. The importance of including the Coriolis coupling quantum scattering calculations are revealed by the comparison between the Coriolis coupling and the centrifugal sudden (CS) approximation calculations.

Concise Synthesis of Flurbiprofen via Palladium-Catalyzed Cross-Coupling Reactions (팔라듐 촉매하 결합반응을 이용한 플루비프로펜의 간결한 합성)

  • Han, Young Taek
    • YAKHAK HOEJI
    • /
    • v.59 no.2
    • /
    • pp.66-69
    • /
    • 2015
  • A concise synthesis of flurbiprofen, a member of the non-steroidal anti-inflammatory 2-arylpropionic acids, has been accomplished. The key feature of this synthesis involves successive palladium-catalyzed cross coupling reactions. In particular, a 2-arylacylate intermediate, which easily converted to the key 2-arylpropionic acid scaffold, was afforded by a versatile palladium-catalyzed cross coupling reaction between diazopropanate and bisphenylboronic acid. This synthetic procedure would facilitate synthesis of the flurbiprofen and anti-inflammatory 2-arylpropionic acid derivatives.

Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides

  • Mo, Jun-Tae;Hwang, Hoon;Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.2911-2915
    • /
    • 2011
  • Efficient synthetic method for the preparation of ethyl 2-aryl-2,3-alkadienoates through Pd-catalyzed selective allenyl cross-coupling reactions of aryl iodides with organoindiums generated in situ from indium and ethyl 4-bromo-2-alkynoate was developed. The cyclization reaction of ethyl 2-aryl-2,3-alkadienoates catalyzed by $AuCl_3$ and AgOTf in the presence of AcOH or TfOH produced various ${\alpha}$-aryl ${\gamma}$-butenolides or ${\gamma}$-substituted ${\alpha}$-aryl ${\gamma}$-butenolides.

Synthesis of Graphene Oxide Based CuOx Nanocomposites and Application for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.1-176.1
    • /
    • 2014
  • Graphene has attracted an increasing attention due to its extraordinary electronic, mechanical, and thermal properties. Especially, the two dimensional (2D) sheet of graphene with an extremely high surface to volume ratio has a great potential in the preparation of multifunctional nanomaterials, as 2D supports to host metal nanoparticles (NPs). Copper oxide is widely used in various areas as antifouling paint, p-type semiconductor, dry cell batteries, and catalysts. Although the copper oxide(II) has been well known for efficient catalyst in C-N cross-coupling reaction, copper oxide(I) has not been highlighted. In this research, CuO and Cu2O nanoparticles (NPs) dispersed on the surface of grapehene oxide (GO) have been synthesized by impregnation method and their morphological and electronic structures have been systemically investigated using TEM, XRD, and XAFS. We demonstrate that both CuO and Cu2O on graphene presents efficient catalytic performance toward C-N cross coupling reaction. The detailed structural difference between CuO and Cu2O NPs and their effect on catalytic performance are discussed.

  • PDF

Graphene Based Cu Oxide Nanocomposites for C-N Cross Coupling Reaction

  • Choi, Jong Hoon;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.138.2-138.2
    • /
    • 2013
  • Copper oxide is a multi-functional material being used in various research areas including catalysis, electrochemical materials, oxidizing agents etc. Among these areas, we have synthesized and utilized graphene based copper oxide nanocomposites (CuOx/Graphene) for the catalytic applications (C-N cross coupling reaction). Briefly, Cu precursors were anchored on the graphite oxide(GO) sheets being exfoliated and oxidized from graphite powder. Two different crystalline structures of Cu2O and CuO on graphene and GO were prepared by annealing them in Ar and O2 environments, respectively. The morphological and electronic structures were systemically investigated using FT-IR, XRD, XPS, XAFS, and TEM. Here, we demonstrate that the catalytic performance was found to depend on oxidative states and morphological structures of CuOx graphene nanocomposites. The relationship between the structure of copper oxides and catalytic efficiency toward C-N cross coupling reaction will be discussed.

  • PDF