RGB 칼라 필터 배열을 사용한 순차주사 CCD 이미지 센서는 센서의 구조적 한계를 극복하고 칼라 신호의 해상도를 향상시키기 위해 칼라 보간 구조가 필요하다. 기존의 접근 방법을 통해 보간된 결과 영상 대부분에서 경계선은 열화되고 재현된 칼라는 원영상의 칼라와 차이가 났다. 본 논문에서는 순차주사 CCD 이미지 센서를 위한 개선된 경계적응적 칼라 보간 구조를 제안했다. 제안된 경계 표시자(edge indicator) 함수는 채널내 상관관계 뿐만 아니라 채널간의 상관관계를 이용하며 주어진 영상의 경계 특성을 칼라 보간 과정에 적응적으로 반영한다. 주어지지 않은 채널 값은 경계를 거스르는 방향이 아니라 경계 방향을 따라서 보간되고, 에일리어징 현상(aliasing artifacts)은 억제가 됐다. 또한 경계적응적 칼라 보간 구조의 단순한 칼라 영상 형성 모델로부터 발생하는 국소적으로 나타나는 잘못된 색을 칼라 경계 검출법에 기반한 스위칭 알고리즘에 의해 제거하였다. 개선된 경계적응적 칼라 보간 구조는 기존의 접근 방법에 비해 주관적 화질과 객관적 화질 모두 우수한 결과를 실험적으로 보였다.
현재 설치된 광섬유의 문제를 모니터링 하는데 가장 널리 사용되는 방법은 Optical Time Domain Reflectometer(OTDR)이다. OTDR는 FTTx 네트워크를 테스트하기 위해 설계된 계측기이며, 전송 손실 및 접속 손실과 같은 광섬유의 물리적 특성을 평가한다. OTDR을 이용하여 광로상의 문제점을 정확히 파악하기 위해서는 Spatial resolution을 높이는 것이 중요하다. 펄스폭이 두 반사체 사이의 거리 두 배보다 작을 때는 두 반사체에서 반사되는 신호는 상호간에 겹침 없이 반사되므로 반사되는 신호의 구분이 가능하지만 펄스폭이 두 반사체 사이의 거리 두 배보다 클 때에는 두 반사 펄스가 겹쳐져 반사되는 신호가 구분되지 못한다. 이와 같은 한계를 극복하기 위해서 본 논문에서는 초 분해능 알고리즘을 적용하여 Spatial resolution 향상 방법을 제안하였으며, 시뮬레이션 결과, 초 분해능 알고리즘 적용 시에 분해능이 향상 되어 이벤트 구간을 더 정밀하게 분석할 수 있었다.
일반거인 피쳐검출 및 추적 알고리즘에는 Garbor-jet를 이용한 elastic bunch graph matching (EBGM), rotation normalized cross-correlation (NCC-R) 및 화소의 고유치를 이용한 Shi-Tomasi-Kanade(STK) 알고리즘 등이 있다. 이들 중에서 EBGM, NCC-R은 피쳐모델에 의해 피쳐를 검출하지만 STK 알고리즘은 피쳐를 자동적으로 검출하는 특징을 가진다. 본 논문에서는 STK알고리즘인 Newton-Raphson (NR) 추적의 초기화 문제를 해결하기 위해서 모델링된 피쳐영역에서 STK 알고리즘으로 피쳐를 검출한 후, NR 방법으로 피쳐를 추적할 때, NR 방법에 의한 피쳐추적의 정확성을 개선시키기 위해 block matching agorithm (BMA)-NR 방법을 제안하였다. NR 방법에 의한 피쳐변위수렴시 BMA-NR 방법이 NBMA-NR (no BMA-NR)방법보다 피쳐추적의 정확성이 향상되었는데, 이는 NR의 서치영역크기로 인한 국소 최소치(local minimum) 문제를 해결하였기 때문이다.
레이더 빔의 과대굴절현상은 수증기압과 기온의 특정한 연직적 대기 조건 하에 주로 발생한다. 과대굴절에 의해 발생하는 이상전파에코는 레이더 영상에서 강수에코로 자주 오인되기 때문에 자료품질 과정에서 미리 제거될 필요가 있다. 이를 위하여 X밴드 이중편파레이더 관측에서 비기상에코(과대굴절에코와 청천대기에코)와 기상에코의 영역에 있는 이중편파변수(차등반사도, 교차상관계수, 차등위상차) 자료들만을 수집하여, 반사도와 이중편파변수들과의 관계성 및 그룹함수에 대해서 두 에코 유형을 비교하였다. 이들 이중편파변수에 텍스쳐 기법을 적용함으로써 비기상에코를 최대한 제거하는 X-밴드 이중편파레이더용 알고리즘을 개발하였다. 전반적으로 이 알고리즘은 이상전파에코를 비교적 잘 탐지하여 제거하였으며, 또한 전라남도 진도에 위치한 S밴드 단일편파레이더 영상 자료와 비교하여 정성적으로 평가되었다.
본 연구논문은 북부아프리카의 알제리에 위치한 하천유역에서 다중선행일 유출량의 예측을 위하여 진화적 최적화기법과 k-fold 교차검증을 결합한 세 개의 서로 다른 기계학습 접근법 (인공신경망, 적응 뉴로퍼지 시스템, 그리고 웨이블릿 기반 신경망)을 개발하고 적용하는 것이다. 인공신경망과 적응 뉴로퍼지 시스템은 root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), 그리고 peak flow criteria (PFC) 의 네 개의 통계지표를 기반으로 하여 모형의 훈련 및 테스팅 결과 유사한 모형수행결과를 나타내었다. 웨이블릿 기반 신경망모형은 하루선행일 테스팅의 결과 RMSE = 8.590 ㎥/sec 과 PFC = 0.252로 분석되어서 인공신경망의 RMSE = 19.120 ㎥/sec, PFC = 0.446 과 적응 뉴로퍼지 시스템의 RMSE = 18.520 ㎥/sec, PFC = 0.444 보다 양호한 결과를 나타내었고, NSE와 R의 값도 웨이블릿 기반 신경망모형이 우수한 것으로 나타났다. 그러므로 웨이블릿 기반 신경망은 알제리 세이보스 하천에서 다중선행일의 예측을 위하여 효율적인 도구로 사용할 수 있다.
본 논문에서는 single-chip CMOS Image Sensor(CIS)용 고화질 image signal processor(ISP)에 최적화된 하드웨어 구조를 제안한다. Single-chip CIS는 CIS와 ISP가 하나의 칩으로 구현된 것으로, 다양한 휴대기기에 사용된다. 휴대기기의 특성상, single-chip CIS용 ISP는 고화질이면서도 저전력을 위해 하드웨어 복잡도를 최소화해야 한다. 영상의 품질 향상을 위해서 다양한 영상 처리 블록들이 ISP에 적용되지만, 그 중에 핵심이면서 하드웨어 복잡도가 가장 큰 블록은 컬러 영상을 만들기 위한 색 보간 블록과 영상을 선명하게 하기 위한 화질 개선 필터 블록이다. 이들 블록은 데이터 처리를 위한 로직 외에도 라인 메모리를 필요로 하기 때문에 ISP의 하드웨어 복잡도의 대부분을 차지한다. 기존 ISP에서는 색 보간과 화질 개선 필터를 독립적으로 수행하였기 때문에 많은 수의 라인 메모리가 필요하였다. 따라서 하드웨어 복잡도를 낮추기 위해서는 낮은 성능의 색보간 알고리즘을 적용하거나, 화질 개선 필터를 사용하지 않아야 했다. 본 논문에서는 화질 개선을 위해 경계 적응적이면서 채널간 상관관계를 고려하는 고화질 색 보간 알고리즘을 적용하였다. 또한 채널 간 상관관계를 고려하는 색 보간 알고리즘의 특성을 이용하여 색 보간 블록과 화질 개선 필터 블록이 라인 메모리를 공유하도록 설계함으로써, 전체 라인 메모리 수를 최소화하는 새로운 구조를 제안한다. 제안된 방법을 적용하면 화질 개선 필터 블록을 위한 추가적인 라인 메모리가 불필요하기 때문에, 고화질과 낮은 복잡도 모두를 만족시킬 수 있다. 제안 방식과 기존 방식의 MSE(Mean Square Error)는 0.37로, 메모리 공유로 인한 화질의 저하는 거의 없었고, 고화질 색 보간 알고리즘을 적용했기 때문에 전체적인 화질은 향상되었다. 제안된 ISP 구조는 Verilog HDL 및 FPGA를 이용하여 실시간으로 구현 검증되었다. 0.25um CMOS 표준 셀 라이브러리를 이용하여 합성하였을 때, 총 게이트 수는 37K개였으며 7.5개의 라인 메모리가 사용되었다.
최근 사용 가능한 고해상도 위성 SAR 영상이 다양해지면서, 변화 탐지를 포함한 다양한 분야에서 SAR 영상에 대한 정밀 정합 요구가 높아지고 있다. 다중 관측각 환경에서의 고해상도 SAR 영상간 정합은 SAR 영상의 특성상 발생하는 스펙클 노이즈, 기하 왜곡 등에 의해 어려움이 있다. 본 연구에서는 독일 TerraSAR-X의 staring spotlight 모드로 촬영된 고해상도 SAR 영상을 활용하여, 개략정합 단계와 정밀정합 단계의 2단계에 걸친 영상정합 알고리즘을 제안하였다. 개략정합 단계에서는 적응형 샘플링 기법과 SAR-SIFT(Scale Invariant Feature Transform)를 결합하여 정합을 수행하였고, 정밀정합 단계에서는 3가지의 강성 정합 기법인 NCC(Normalized Cross Correlation), PC (Phase Congruency)-NCC, MI (Mutual Information) 기법과 비강성 정합 기법인 Gefolki (Geoscience extended Flow Optical Flow Lucas-Kanade Iterative)를 적용하여 정합 성능을 비교 분석하였다. 정합 결과는 RMSE (Root Mean Square Error)와 FSIM (Feature Similarity) 지수를 사용하여 정량적인 비교를 수행하였다. 사용한 모든 영상 조합에서 강성정합 기법은 Gefolki 알고리즘에 비해 저조한 정합 성능을 보였다. 강성정합 모델들은 지형기복이 큰 지역에서 정합오차가 크게 발생함을 확인할 수 있었다. Gefolki 알고리즘 적용 결과, RMSE 1~3화소를 보이며 가장 우수한 결과를 확인하였으며, FSIM 지수 또한 다른 기법에 비해 0.02~0.03 이상 높은 값을 취득했다. 다중 관측각 영상에서의 고해상도 SAR 영상 간 정합 성능을 비교하였으며, 강성정합 기법에 비해 Gefolki 알고리즘을 통해 지형효과를 충분히 줄일 수 있음을 확인했다. 이는 추후 변화탐지를 포함한 다양한 분야의 전 처리 과정에 효과적으로 사용될 수 있을 것으로 기대된다.
대부분의 고해상도 위성영상은 rational polynomial coefficients (RPC) 정보를 제공하여 지상좌표와 영상좌표 간 변환을 수행한다. 그러나 초기 RPC에는 기하학적 오차가 존재하여 ground control points (GCPs)와의 정합을 통해 보정을 수행하여야 한다. GCP chip은 항공정사영상에서 추출한 높이 정보가 포함된 작은 영상 패치(patch)이다. 많은 선행연구에서는 영역 기반 정합 기법을 사용하여 고해상도 위성영상과 GCP chip 간 정합을 수행하였다. 계절적 차이나 변화된 지역이 존재하는 영상에서는 화소값에 의존하는 정합이 어렵기 때문에 윤곽 정보를 추출하여 정합을 수행하기도 한다. 그러나 일반적으로 사용하는 canny 기법으로 정합에 용이한 윤곽을 추출하기 위해서는 위성영상의 분광 특성에 적절한 임계치를 설정해주어야 하는 문제가 존재한다. 따라서 본 연구에서는 위성영상의 지역별 특성에 둔감한 윤곽 정보를 활용하여 RPC 보정을 위한 정합을 수행하고자 한다. 이를 위해 딥러닝 기반 윤곽 정보 추출 네트워크인 pixel difference network (PiDiNet)를 활용하여 위성영상과 GCP chip의 윤곽맵(edge map)을 각각 생성하였다. 그 후 생성된 윤곽맵을 normalized cross-correlation과 relative edge cross-correlation의 입력데이터로 대체하여 영역 기반의 정합을 수행하였다. 마지막으로 RPC 보정에 필요한 변환모델 계수를 도출하기 위하여 data snooping 기법을 반복적으로 적용하여 참정합쌍을 추출하였다. 오정합쌍을 제거한 참정합쌍에 대해 root mean square error (RMSE)를 도출하고 기존에 사용하던 상관관계 기법과 결과를 정성적으로 비교하였다. 실험 결과, PiDiNet은 약 0.3~0.9 화소의 RMSE 값 분포를 보였으나 canny 기법에 비해 두꺼운 윤곽을 나타내어 일부 영상에서 미세하게 정확도가 저하되는 것을 확인하였다. 그러나 위성영상 내 특징적인 윤곽을 일관적으로 나타냄으로써 정합이 어려운 지역에서도 정합이 잘 수행되는 것을 확인하였다. 본 연구를 통해 윤곽 기반 정합 기법의 강인성을 개선하여 다양한 지역에서의 정합을 수행할 수 있을 것으로 예상된다.
입자추적유속계(PTV)는 나노 및 바이오 분야의 유체유동장에서는 각 입자들을 추적하여 속도측정을 하는 관계로 많은 강점이 있다. 그러나 측정원리상 보간에 의한 속도장 측정오차를 피할 수 없는 관계로 PTV기술을 사용함에 있어서 제한적이었다. 본 연구에서는 어파인변환 알고리듬을 PIV 및 PTV측정에 도입함으로써 보간에 의한 오차를 줄일 수 있는 어파인변환 기반 하이브리드 PIV알고리듬을 구축하였다. 구축된 알고리듬에 대한 성능평가를 위하여 Green-Taylor와유동의 수치적 데이터를 이용한 가상영상에 대한 시험을 실시하였으며, 이로부터 입자수가 2000개 이상일 때 최적의 측정성능임을 확인하였으며 상호상관PIV법 및 확률일치PTV법보다 우수한 측정성능임을 확인하였다. 나아가 길이비 2:1($6cm\;{\times}3cm$)인 장방형 물체후류(Re=5,300)에 대한 실험영상에 대한 실제 계산을 통하여 구축된 알고리듬에 대한 측정성능의 우수성을 확인하였다.
본 논문에서는 디지탈 감산 기법을 이용한 양면 혈관 조영술 영상에서의 대응점 결정을 위하여 조영제 말단 추적 알고리즘을 사용하였고, 이 대응점 정보로부터 혈관의 3차원 영상을 재구성하는 과정을 확립하였으며, 개를 이용한 실험 결과도 포함되어 있다. 저자들에 의해 개발된 본 방법의 정확성을 입증하기 위해 사각에서 잡은 혈관 조영상과 계산을 통해 재구성된 영상을 비교하여 좋은 결과를 얻었다. 본 논문에서는 3가지의 새로운 알고리즘을 개발, 또는 응용하였는바, 첫째는, 순차적인 영상에서 조영제의 말단은 어느 투영면에서도 동일한 형태를 갖게 되므로, 상호 상관 계수의 접합법을 이용하여 조영제 말단을 추적해 가는 알고리즘이고, 둘째는, 기준좌표계에서 시선좌표계로의 전환을 4×4행렬 하나로 표시한 단순화 투시 변환 행렬의 구성이며, 셋째는, 조영제 말단 추적법이 적용될 수 없는 작은 혈관 영상에서의 대응점 확립을 위한 보조알고리즘의 적용이 그것이다. 또한 본 방법은 3차원 공간상에서의 조영제 말단 이동거리에 대한 정보로부터 혈류속도의 측정에도 이용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.