• Title/Summary/Keyword: Cross-Shaped Die

Search Result 24, Processing Time 0.018 seconds

A Split Die Design for Forging of Hexagonal Bolt Head (육각볼트 헤드 단조를 위한 분할금형설계)

  • Qiu, Yuangen;Cho, Hae Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.91-97
    • /
    • 2020
  • A split-die design for the cold forging of symmetric parts such as those having a hexagonal cross-section is presented in this paper. Parts with a hexagonal cross-section, such as bolt heads and nuts, should be forged with a die that has a hexagonal-shaped hole. A split type die is required to mitigate the buildup of stress concentrations located at the corners of the hexagonal hole. Generally, the insert of a hexagonal die is made by cutting each corner of a cylinder using a hexagonal hole and then combined with the die and shrink-fitted. However, split dies face problems when extruding material at the corners of the hexagonal split die. To address this problem, two types of split dies were evaluated: rounded hexagonal dies and angular hexagonal dies. The effects of the pre-stress ring on the dies were compared and analyzed and results show that using the angular split hexagonal die can extend the lifetime of forging dies.

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

A Study on Arbitrary Cross Section Shaped Three-Dimensional Extruion with Upper Bound Method-Finite Element Method Couple (임의 단면 형상의 3차원 압출에 대한 상계해법-유한요소법 Couple에 관한 연구)

  • 이병섭;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.145-155
    • /
    • 1996
  • The extrusion velocity of billet through a die and the shapes of the die are the important factors in the metal forming process of the extrusion of billet. in recent years, the life cycle of products is goingfaster. Although the former finite element method was capable of yielding a detailed analysis, it requires lots of time and extensive coding effort. Then, some simple devices were developed and based on upper bound method. For this purpose , a kinematically admiasible velocity field is formulated for extrusion of cylinders with arbitrary cross section and die profile on their outer surfaces by using a modified upper bound approach, which configures simulataneous extruding speeds in three directions . Also, In order to display mesh of the cold forward extrusion process using the approach , the automatic three-dimentional mesh generation produced by the approach coupled finite element method with upper bound method.

  • PDF

Verification of Sensitivity Method for the Design of Optimal Blanks of General Shaped Parts (일반적인 형상의 스탬핑의 최적블랭크 설계를 통한 민감도법의 검증)

  • 손기찬;심현보;황현태
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 2001
  • The sensitivity method has been utilized to find initial blank shapes which transform into desired shapes after forming. From the information of die shapes, target shape and material properties, the corresponding initial blank which gives final shape after deformation has been found. Drawings of a trapezoidal cup, a cross-shaped cup and an oil pan have been chosen as the examples. At every case the optimal blank shape has been obtained only a few times of modification without any predetermined deformation path. With the predicted optimal blank, both computer simulation and experiment are performed. Excellent agreements are recognized between simulation and experiment at every cases Through the investigation, the sensitivity method is found to be effective in obtaining optimal blank shapes in drawing of complex shapes.

  • PDF

Design of Porthole Extrusion Die for Improving the Welding Pressure in Welding Chamber by using the FE Analysis and Taguchi Method (유한요소해석 및 다구찌법을 이용한 접합실 내 접합압력 향상을 위한 포트홀 압출 금형 설계)

  • Lee, S.Y.;Lee, I.K.;Jeong, M.S.;Ko, D.C.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.347-353
    • /
    • 2019
  • The porthole extrusion process is a classic metal forming process to produce complex cross-section shaped aluminum profile. It is very difficult to design porthole die and extrusion process because of the complex shape of extrusion die and internal metal flow. The main variables in this process are ram speed, initial billet and tool temperature, and die shape. In general, the metal flow of porthole extrusion process can be divided into two steps. During the first step, the billet is divided into several parts in the porthole die bridge. During the second step, the divided billets are welded in the welding chamber. In the welding chamber, the level of welding pressure is very important for the quality of the final product. The purpose of this study is to increase the welding pressure in the welding chamber by using a two stage welding chamber. The porthole extrusion die was designed by using the Taguchi method with orthogonal array. The effectiveness of the optimized porthole die was verified by using the finite element analysis.

유한요소법을 이용한 전방압출공정의 내부결함에 관한 연구

  • 김태형;김병민;강범수;최재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.79-83
    • /
    • 1992
  • According to the variation of hydrostatic pressure on the central axis of deformable material, the V-shaped central bursting defect may be created on extrusion or drawing processes. The process factors whichaffect the generation of defects are die semi-angle, reduction ratio of cross-sectional area, friction factor, material properties and so on. The combination of these factors can determine the prossibility of defect creation and the shape of various round holes which have been created inside already. By the rigid plastic finite element method, this paper describes the observations of change in shape of a round hole with process conditions suchas die semi-angle, reduction ratio of cross-sectional area and friction factorat the unsteady state of axi-symmetrical extrusion process when the round hole is alreadyexisted inside the original billet, and also, the effects of process factors are investigated to prevent the possible defects.

A Study on Characteristics of the Material Flow in Side-Extrusion (측방압출에서의 재료유동특성에 관한 연구)

  • 김영호;김강수;윤상식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.232-235
    • /
    • 1995
  • A side-extrusion model, meant for deeper understanding of the material flow in the CONFORM (continuous extrusion forming) of trub shaped aluminum profiles is presented. In order to get the desirded straight shape of the extrudate,every part of its cross-section must exit the die with the same velocity. Problem is assumed by plane strain UBET-model to analyze it in a simplified way. This has been done by studying the side-extrusion through a two -hole die face. The flow is balanced by determining the optimum lengths of the bearing lands, i.e., those lengths which result in equal exit velocities of the extrudates. Furthermore, the material flow, as influenced by the punch velocity, has been investigated.

  • PDF

A Study on Central Bursting Defects in Forward Extrusion by the Finite Element Method (유한요소법을 이용한 전방압출공정의 내부결함에 관한 연구)

  • Kim, T.H.;Lee, J.H.;Kwon, H.H.;Kim, B.M.;Kang, B.S.;Choi, J.C.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.66-74
    • /
    • 1992
  • According to the variation of hydrostatic pressure on the central axis of deformable material, the V-shaped central bursting defect may be created in extrusion or drawing processes. The process factors which affect the generation of defects are semi-angle of die, reduction ratio of cross-sectional area, friction factor, material properties and so on. The combination of these factors can determine the possibility of defect creation and the shape of various round holes which have been created inside already. By the rigid plastic finite element method, this paper describes the observations of change in shape of round holes with process conditions such as semi-angle of die, reduction ratio of cross-sectional area and friction factor at the non-steady state of axisymmetrical extrusion process when the round hole is already existed inside the original billet. Also, the effects of process factors are investigated to prevent the possible defects.

  • PDF

Experimental Study of Direct Metal Prototyping Prcess (금속재료를 이용한 직접식 3차원 형상제조공정의 실험적 연구)

  • 신민철;손현기;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.169-175
    • /
    • 1994
  • This study attempts to develop a process which can produce three-dimensional shapes of metals directly from CAD data. Prototypes made from metals, can not only be used to test the mecchanical properties of the product, but also potentially become the actual die or product itself. The test-device of the process has been designed and manufactured. The laser scanning method using a scanning path schedule composed of circle and arc elements, scanning speed variation method and dwell method have been developed, which resist warping phenomenon and increase the adhesiveness between the layers. For the production of prototypes with pure iron powder, the optimal values of the principal process parameters have been determined, through which cross-shaped and twisted clover-shaped prototypes have been fabricated. In order to improve the strength of the prototype, the experimental studies of solid-phase sintering, and copper infiltration have been done.

  • PDF

Characteristics of Symmetric-Shape Parts Shearing on Micro NCT (마이크로 NCT에 의한 대칭형상구멍의 전단특성)

  • Hong N. P.;Kim B. H.;Chang I. B.;Kim H. Y.;Oh S. I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.285-291
    • /
    • 2002
  • The shearing process for the sheet metal is normally used in the precision elements such as a frame of TFT-LCD or lead frame of If chips. In these precision elements, the burr formation prevents the system assembly and needs the additional burr removing process. In this paper, we developed the small size NC punching system which has an aligning kinematics between the rectangular shaped punch and die. The punch is driven by an ai cylinder and the sheet metal is moving on the X-Y table system which is driven by two stewing motors. The microprocessor control the whole system and communicate with the monitoring PC by RS232C serial communication protocol. The graphic user interface program in PC monitors nil control the punching system. The cross shaped joint hinge supports the punching die and positioned by two differential screws, whose are installed in perpendicular directions. The aligning between the punch and die is performed using the sheets of half thickness(0.1mm Brass) of the real process for the frame of the TFT-LCD. Using half thickness Brass, the burr formation is magnified and we can decide the aligning direction more easily then using the real thickness(0.2mm) Aluminum. In this paper, the aligning results are measured manually using the SEM photographs and we hope to make the automated aligning procedures using some kinds of image processing techniques.

  • PDF