• Title/Summary/Keyword: Cross validation technique

Search Result 126, Processing Time 0.025 seconds

Estimating soils properties using NIRS to assess amendments in intensive horticultural production

  • Pena, Francisco;Gallardo, Natalia;Campillo, Carmen Del;Garrido, Ana;Cabanas, Victor Fernandez;Delgado, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1615-1615
    • /
    • 2001
  • During the past ten years, Near Infrared Spectroscopy has been successfully applied to the analysis of a great variety of agriculture products. Previous works (Morra et al., 1991; Salgo et al., 1998) have shown the potential of this technology for soil analysis, estimating different parameters just with one single scan. The main advantages of NIR applications in soils are the speed of response, allowing the increase of the number of samples analysed to define a particular soil, and the instantaneous elaboration of recommendations for fertilization and soil amendment. Another advantage is to avoid the use of chemical reagents at all, being an environmentally safe technique. In this paper, we have studied a set of 129 soil samples selected from representative glasshouse soils from Southern Spain. The samples were dried, milled, and sieved to pass a 2 mm sieve and then analysed for organic carbon, total nitrogen, inorganic nitrogen (nitrate ammonium), hygroscopic humidity, pH and electrical conductivity in the 1:1 extract. NIR spectra of all samples were obtained in reflectance mode using a Foss NIR Systems 6500 spectrophotometer equipped with a spinning module. Calibration equations were developed for seven analytical parameters (ph, Total nitrogen, organic nitrogen, organic carbon, C/N ratio and Electric Conductivity). Preliminary results show good correlation coefficients and standard errors of cross validation in equations obtained for Organic Carbon, Organic Nitrogen, Total Nitrogen and C/N ratio. Calibrations for nitrates and nitrites, ammonia and electric conductivity were not acceptable. Calibration obtained for pH had an acceptable SECV, but the determination coefficient was found very poor probably due to the reduced range in reference values. Since the estimation of Organic Carbon and C/N ratio are acceptable NIIRS could be used as a fast method to assess the necessity of organic amendments in soils from Mediterranean regions where the low level of organic matter in soils constitutes an important agronomic problem. Furthermore, the possibility of a single and fast estimation of Total Nitrogen (tedious determination by modifications of the Kjeldahl procedure) could provide and interesting data to use in the estimation of nitrogen fertilizer rates by means of nitrogen balances.

  • PDF

Enhancement of Geomorphology Generation for the Front Land of Levee Using Aerial Photograph (항공영상을 연계한 하천 제외지의 지형분석 개선 기법)

  • Lee, Geun Sang;Lee, Hyun Seok;Hwang, Eui Ho;Koh, Deuk Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.407-415
    • /
    • 2008
  • This study presents the methodology to link with aerial photos for advancing the accuracy of topographic survey data that is used to calculate water volume in urban stream. First, GIS spatial interpolation technique as Inverse Distance Weight (IDW) and Kriging was applied to construct the terrain morphology to the sand-bar and grass area using cross-sectional survey data, and also validation point data was used to estimate the accuracy of created topographic data. As the result of comparison, IDW ($d^{-2}_{ij}$, 2nd square number) in Sand-bar area and Kriging Spherical model in grass area showed more efficient results in the construction of topographic data of river boundary. But the differences among interpolation methods are very slight. Image classification method, Minimum Distance Method (MDM) was applied to extract sand-bar and grass area that are located to river boundary efficiently and the elevation value of extracted layers was allocated to the water level point value. Water volume with topographic data from aerial photos shows the advanced accuracy of 13% (in sand-bar) and 12% (in grass) compared to the water volume of original terrain data. Therefore, terrain analysis method in river linking with aerial photos is efficient to the monitoring about sand-bar and grass area that are located in the downstream of Dam in flooding season, and also it can be applied to calculate water volume efficiently.

Development and Validation of Real-time PCR to Determine Branchiostegus japonicus and B. albus Species Based on Mitochondrial DNA (Real-time PCR 분석법을 이용한 옥돔과 옥두어의 종 판별법 개발)

  • Chung, In Young;Seo, Yong Bae;Yang, Ji-Young;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1331-1339
    • /
    • 2017
  • DNA barcoding is the identification of a species based on the DNA sequence of a fragment of the cytochrome C oxidase subunit I (COI) gene in the mitochondrial genome. It is widely applied to assist with the sustainable development of fishery-product resources and the protection of fish biodiversity. This study attempted to verify horse-head fish (Branchiostegus japonicus) and fake horse-head fish (Branchiostegus albus) species, which are commonly consumed in Korea. For the validation of the two species, a real-time PCR method was developed based on the species' mitochondrial DNA genome. Inter-species variations in mitochondrial DNA were observed in a bioinformatics analysis of the mitochondrial genomic DNA sequences of the two species. Some highly conserved regions and a few other regions were identified in the mitochondrial COI of the species. In order to test whether variations in the sequences were definitive, primers that targeted the varied regions of COI were designed and applied to amplify the DNA using the real-time PCR system. Threshold-cycle (Ct) range results confirmed that the Ct ranges of the real-time PCR were identical to the expected species of origin. Efficiency, specificity and cross-reactivity assays showed statistically significant differences between the average Ct of B. japonicus DNA ($21.85{\pm}3.599$) and the average Ct of B. albus DNA ($33.49{\pm}1.183$) for confirming B. japonicus. The assays also showed statistically significant differences between the average Ct of B. albus DNA ($22.49{\pm}0.908$) and the average Ct of B. japonicus DNA ($33.93{\pm}0.479$) for confirming B. albus. The methodology was validated by using ten commercial samples. The genomic DNA-based molecular technique that used the real-time PCR was a reliable method for the taxonomic classification of animal tissues.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

Non Destructive Fast Determination of Fatty Acid Composition by Near Infrared Reflectance Spectroscopy in Sesame

  • Kang, Churl-Whan;Kim, Dong-Hwi;Lee, Sung-Woo;Kim, Ki-Jong;Cho, Kyu-Chae;Shim, Kang-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.283-291
    • /
    • 2006
  • To investigate seed non destructive and fast determination technique utilizing near infrared reflectance spectroscopy (NIRs) for screening ultra high oleic (C18:1) and linoleic (C18:2) fatty acid content sesame varieties among genetic resources and lines of pedigree generations of cross and mutation breeding were carried out in National Institute of Crop Science (NICS). 150 among 378 landraces and introduced cultivars were released to analyse fatty acids by NIRs and gas chromatography (GC). Average content of each fatty acid was 9.64% in palmitic acid (C16:0), 4.73% in stearic acid (C18:0), 42.26% in oleic acid and 43.38% in linoleic acid by GC. The content range of each fatty acid was from 7.29 to 12.27% in palmitic, 6.49% from 2.39 to 8.88% in stearic, 12.59% of wider range compared to that of stearic and palmitic from 37.36 to 49.95% in oleic and of the widest from 30.60 to 47.40% in linoleic acid. Spectrums analyzed by NIRs were distributed from 400 to 2,500 nm wavelengths and varietal distribution of fatty acids were appeared as regular distribution. Varietal differences of oleic acid content good for food processing and human health by NIRs was 14.08% of which 1.49% wider range than that of GC from 38.31 to 52.39%. Varietal differences of linoleic acid content by NIRs was 16.41% of which 0.39% narrower range than that of GC from 30.60 to 47.01%. Varietal differences of oleic and linoleic acid content in NIRs analysis were appeared relatively similar inclination compared with those of GC. Partial least square regression (PLSR) among multiple variant regression (MVR) in NIRs calibration statistics was carried out in spectrum characteristics on the wavelength from 700 to 2,500 nm with oleic and linoleic acids. Correlation coefficient of root square (RSQ) in oleic acid content was 0.724 of which 72.4 percent of sample varieties among all distributed in the range of 0.570 percent of standard error when calibrated (SEC) which were considerably acceptable in statistic confidence significantly for analysis between NIRs and GC. Standard error of cross validation (SECV) of oleic acid was 0.725 of which distributed in the range of 0.725 percent standard error among the samples of mother population between analyzed value by NIRs analysis and analyzed value by GC. RSQ of linoleic acid content was 0.735 of which 73.5 percent of sample varieties among all distributed in the range of 0.643 percent of SEC. SECV of linoleic acid was 0.711 of which distributed in the range of 0.711 percent standard error among the samples of mother population between NIRs analysis and GC analysis. Consequently, adoption NIR analysis for fatty acids of oleic and linoleic instead that of GC was recognized statistically significant between NIRs and GC analysis through not only majority of samples distributed in the range of negligible SEC but also SECV. For enlarging and increasing statistic significance of NIRs analysis, wider range of fatty acids contented sesame germplasm should be kept on releasing additionally for increasing correlation coefficient of RSQ and reducing SEC and SECV in the future.

Impacts assessment of Climate changes in North Korea based on RCP climate change scenarios II. Impacts assessment of hydrologic cycle changes in Yalu River (RCP 기후변화시나리오를 이용한 미래 북한지역의 수문순환 변화 영향 평가 II. 압록강유역의 미래 수문순환 변화 영향 평가)

  • Jeung, Se Jin;Kang, Dong Ho;Kim, Byung Sik
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.39-50
    • /
    • 2019
  • This study aims to assess the influence of climate change on the hydrological cycle at a basin level in North Korea. The selected model for this study is MRI-CGCM 3, the one used for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Moreover, this study adopted the Spatial Disaggregation-Quantile Delta Mapping (SDQDM), which is one of the stochastic downscaling techniques, to conduct the bias correction for climate change scenarios. The comparison between the preapplication and postapplication of the SDQDM supported the study's review on the technique's validity. In addition, as this study determined the influence of climate change on the hydrological cycle, it also observed the runoff in North Korea. In predicting such influence, parameters of a runoff model used for the analysis should be optimized. However, North Korea is classified as an ungauged region for its political characteristics, and it was difficult to collect the country's runoff observation data. Hence, the study selected 16 basins with secured high-quality runoff data, and the M-RAT model's optimized parameters were calculated. The study also analyzed the correlation among variables for basin characteristics to consider multicollinearity. Then, based on a phased regression analysis, the study developed an equation to calculate parameters for ungauged basin areas. To verify the equation, the study assumed the Osipcheon River, Namdaecheon Stream, Yongdang Reservoir, and Yonggang Stream as ungauged basin areas and conducted cross-validation. As a result, for all the four basin areas, high efficiency was confirmed with the efficiency coefficients of 0.8 or higher. The study used climate change scenarios and parameters of the estimated runoff model to assess the changes in hydrological cycle processes at a basin level from climate change in the Amnokgang River of North Korea. The results showed that climate change would lead to an increase in precipitation, and the corresponding rise in temperature is predicted to cause elevating evapotranspiration. However, it was found that the storage capacity in the basin decreased. The result of the analysis on flow duration indicated a decrease in flow on the 95th day; an increase in the drought flow during the periods of Future 1 and Future 2; and an increase in both flows for the period of Future 3.