• 제목/요약/키워드: Cross validation function

검색결과 130건 처리시간 0.024초

Kernel method for autoregressive data

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.949-954
    • /
    • 2009
  • The autoregressive process is applied in this paper to kernel regression in order to infer nonlinear models for predicting responses. We propose a kernel method for the autoregressive data which estimates the mean function by kernel machines. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which affect the performance of kernel regression. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of mean function in the presence of autocorrelation between data.

  • PDF

Support vector quantile regression for longitudinal data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권2호
    • /
    • pp.309-316
    • /
    • 2010
  • Support vector quantile regression (SVQR) is capable of providing more complete description of the linear and nonlinear relationships among response and input variables. In this paper we propose a weighted SVQR for the longitudinal data. Furthermore, we introduce the generalized approximate cross validation function to select the hyperparameters which affect the performance of SVQR. Experimental results are the presented, which illustrate the performance of the proposed SVQR.

Kernel Machine for Poisson Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권3호
    • /
    • pp.767-772
    • /
    • 2007
  • A kernel machine is proposed as an estimating procedure for the linear and nonlinear Poisson regression, which is based on the penalized negative log-likelihood. The proposed kernel machine provides the estimate of the mean function of the response variable, where the canonical parameter is related to the input vector in a nonlinear form. The generalized cross validation(GCV) function of MSE-type is introduced to determine hyperparameters which affect the performance of the machine. Experimental results are then presented which indicate the performance of the proposed machine.

  • PDF

Robust Cross Validation Score

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.413-423
    • /
    • 2005
  • Consider the problem of estimating the underlying regression function from a set of noisy data which is contaminated by a long tailed error distribution. There exist several robust smoothing techniques and these are turned out to be very useful to reduce the influence of outlying observations. However, no matter what kind of robust smoother we use, we should choose the smoothing parameter and relatively less attention has been made for the robust bandwidth selection method. In this paper, we adopt the idea of robust location parameter estimation technique and propose the robust cross validation score functions.

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

Nonparametric Estimation of Distribution Function using Bezier Curve

  • Bae, Whasoo;Kim, Ryeongah;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • 제21권1호
    • /
    • pp.105-114
    • /
    • 2014
  • In this paper we suggest an efficient method to estimate the distribution function using the Bezier curve, and compare it with existing methods by simulation studies. In addition, we suggest a robust version of cross-validation criterion to estimate the number of Bezier points, and showed that the proposed method is better than the existing methods based on simulation studies.

Censored Kernel Ridge Regression

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1045-1052
    • /
    • 2005
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The weighted data are formed by redistributing the weights of the censored data to the uncensored data. Then kernel ridge regression can be taken up with the weighted data. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized approximate cross validation(GACV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

  • PDF

Mixed Effects Kernel Binomial Regression

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1327-1334
    • /
    • 2008
  • Mixed effect binomial regression models are widely used for analysis of correlated count data in which the response is the result of a series of one of two possible disjoint outcomes. In this paper, we consider kernel extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method based on kernel trick, and our focus is on the efficient computation and the effective hyperparameter selection. For the selection of hyperparameters, cross-validation techniques are employed. Examples illustrating usage and features of the proposed method are provided.

  • PDF

확률밀도함수의 불연속점 추정을 위한 띠폭 선택 (Bandwidth selection for discontinuity point estimation in density)

  • 허집
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권1호
    • /
    • pp.79-87
    • /
    • 2012
  • Huh (2002)는 확률밀도함수가 하나의 불연속점을 가질 때, 한쪽방향커널함수를 이용하여 확률 밀도함수의 오른쪽과 왼쪽 커널추정량을 제시하여 그 차를 최대로 하는 점을 불연속점의 위치추정량으로 제안하였다. 커널추정량의 평활모수인 띠폭의 선택의 중요함은 익히 알려져 있다. 최대가능도 교차타당성은 확률밀도함수의 커널추정량에서 띠폭 선택의 기준으로 널리 쓰여지고 있다. 본 연구에서는 한쪽방향커널함수를 이용한 확률밀도함수의 오른쪽과 왼쪽 커널추정량들의 띠폭의 선택 방법을 Hart와 Yi (1998)의 한쪽방향교차타당성의 방법론을 최대가능도교차타당성에 적용하여 제안하고자 한다. 소표본 모의실험을 통하여 연구결과를 제시하고자 한다.

SVQR with asymmetric quadratic loss function

  • Shim, Jooyong;Kim, Malsuk;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1537-1545
    • /
    • 2015
  • Support vector quantile regression (SVQR) can be obtained by applying support vector machine with a check function instead of an e-insensitive loss function into the quantile regression, which still requires to solve a quadratic program (QP) problem which is time and memory expensive. In this paper we propose an SVQR whose objective function is composed of an asymmetric quadratic loss function. The proposed method overcomes the weak point of the SVQR with the check function. We use the iterative procedure to solve the objective problem. Furthermore, we introduce the generalized cross validation function to select the hyper-parameters which affect the performance of SVQR. Experimental results are then presented, which illustrate the performance of proposed SVQR.