• Title/Summary/Keyword: Cross linking

Search Result 665, Processing Time 0.021 seconds

Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix

  • Maeta, Eri;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • The objective of this study is to prepare an artificial extracellular matrix (ECM) for cell culture by using polymer hydrogels. The polymer used is a cytocompatible water-soluble phospholipid polymer: poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-n-butyl methacrylate-p-nitrophenyloxycarbonyl poly(ethylene oxide) methacrylate (MEONP)] (PMBN). The hydrogels are prepared using a cross-linking reaction between PMBN and diamine compounds, which can easily react to the MEONP moiety under mild conditions. The most favorable diamine is the bis(3-aminopropyl) poly(ethylene oxide) (APEO). The effects of cross-linking density and the chemical structure of cross-linking molecules on the mechanical properties of the hydrogel are evaluated. The storage modulus of the hydrogel is tailored by tuning the PMBN concentration and the MEONP/amino group ratio. The porous structure of the hydrogel networks depends not only on these parameters but also on the reaction temperature. We prepare a hydrogel with $40-50{\mu}m$ diameter pores and more than 90 wt% swelling. The permeation of proteins through the hydrogel increases dramatically with an increase in pore size. To induce cell adhesion, the cell-attaching oligopeptide, RGDS, is immobilized onto the hydrogel using MEONP residue. Bovine pulmonary artery endothelial cells (BPAECs) are cultured on the hydrogel matrix and are able to migrate into the artificial matrix. Hence, the RGDS-modified PMBN hydrogel matrix with cross-linked APEO functions as an artificial ECM for growing cells for applications in tissue engineering.

Physical Properties of the Silica-Reinforced Tire Tread Compounds by the Increased Amount of Vulcanization Agents (가교제 증량이 트레드용 실리카 컴파운드의 물성에 미치는 영향)

  • Seo, Byeongho;Kim, Ki-Hyun;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.201-208
    • /
    • 2013
  • In this study, effect of different amounts of sulfur and vulcanization accelerators in the acrylonitrile styrene-butadiene rubber (AN-SBR)/silica compounds on the properties of tire tread compound were studied. As a result, cure rate and degree of cross-linking of the compounds were increased due to enhanced cross-linking reactivity by the increased amounts of sulfur and vulcanization accelerators. Also, abrasion resistance and the mechanical properties such as hardness and modulus of the compounds were improved by enhanced degree of cross-linking of the compounds. For the dynamic properties, tan ${\delta}$ value at $0^{\circ}C$ was increased due to the increase of glass transition temperature ($T_g$) by enhanced degree of cross-linking of the compound, and tan ${\delta}$ value at $60^{\circ}C$ was decreased. Initial cure time ($t_1$) showed the linear relationship with tan ${\delta}$ value at $60^{\circ}C$. This result is attributed that reduced initial cure time ($t_1$) of compounds by applying increased amount of curatives can form cross-linking in early stage of vulcanization that may suppress development of filler network. This result is verified by observation on the surface of annealed compounds using AFM (atomic force microscopy). Consequently, decreased initial cure time is considered a very important parameter to reduce tan ${\delta}$ at $60^{\circ}C$ through reduced re-agglomeration of silica particles.

Evaluation on the Behavioral Characteristics of Plastic Greenhouse by Full-scale Testing and Finite Element Analysis (재하시험과 유한요소해석에 의한 플라스틱 필름 온실의 거동특성 분석)

  • Ryu, Hee Ryong;Lee, Eung Ho;Cho, Myeong Whan;Yu, In Ho;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.459-465
    • /
    • 2012
  • This study analyzed the effect of semi-rigid rafter-purlin cross-linking connection and driven steel pipe base on the static behavior of plastic greenhouse (PG). To promote the time and cost efficiency of the assembly process, each cross-linking connections of space arch type grid that consists of rafter and purlin is linked with steel-wire buckles, and each end of the rafters was driven directly to the ground to support the PG structure. However, in the design process, cross-linking connections and bases are idealized by being categorized as fully rigid or frictionless pinned, which does not appropriately reflect actual conditions. This study takes a full-scale loading test of PG and analyzes the effect of member cross-linking connections and driven steel pipe base on the behavior of a structure. The analysis provided a basis for determining the rigidity factor of member cross-linking nodes needed for finite element analysis, and the reliability of the result regarding the static behavior of PG.

A New Coloured Substrate for the Determination of $\beta$-Glucan Degrading Enzyme from Malt and Bacillus subtilis K-4-3 (맥아와 Bacillus subtilis B-4-3의 $\beta$-Glucan 분해 효소측정을 위한 새로운 색소기질)

  • 이성택
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.79-84
    • /
    • 1988
  • Dye materials and cross linking agents were used for the determination of $\beta$-glucanase activities. The objective of this study was to prepare the blue coloured substrates which are sensitive, specific and simple for the determination of $\beta$-glucanase in malt and Bacillus subtilis K-4-3 enzymes. This method is based on the principle of measuring colorimetrically the split product of coloured and cross linked substrate. The best coupling of dye stuff of $\beta$-glucan was cibacron blue 3G-A and the colour released can suitably be measured at 623nm. Optimal concentration of dye and cross linking agents was 1.5g and 1.25$m\ell$ under 0.1N NaOH. The sensitivity comparison proved that the stained $\beta$-glucan method is much more sensitive than the DNS method to determine reducing sugar released by the enzyme.

  • PDF

Preparation of Pore-filled Ion-exchange Membranes using Poly(vinylbenzyl ammoninum salt) (Poly(vinylbenzyl ammonium salt)를 이용한 Pore-filled 이온교환막의 제조)

  • 변홍식
    • Membrane Journal
    • /
    • v.11 no.3
    • /
    • pp.109-115
    • /
    • 2001
  • Pore-filled ion-exchange membranes in which polypropylene(PP) microporous membrane was used as a nascent membrane were prepared by an in-situ cross-linking technique. Poly(vinylbenzyl chloride)(PVBCI) reacted with piperazine(PIP) or 1,4-diaminobicyclo[2,2,2]octane(DABCO) in a di-methylforamide(DMF) solution was filled in the pores of the microporous base membrane. After gellation the remaining chloromethyl groups were, then reacted with an amine such as trimethylamine to form positively charged, ammonium site. This will produce the pore-filled anion-exchange membrane. It was shown that this simple 2 step procedure gave dimensionally stable, pore-filled membranes in which the MG of polymer gel and degree of cross-linking could be easily controlled by the concentration of PVBCI and cross-linker in the starting DMF solution. Specially, high water permeability (7.8 kg/$m^2$hr, host membrane: PP3, MG: 73%, degree of cross-linking: 10%, crosslinker: PIP) at ultra low pressure(100 kPa) indicates the produced pore-filled membranes is usable as a water softening membrane.

  • PDF

The Effect of Various Methods of Cross-linking in Type I Collagen Scaffold on Cartilage Regeneration (I형 콜라겐지지체의 다양한 가교처리 방법이 연골막성 연골재생에 미치는 영향)

  • Son, Dae Gu;Lim, Joong Jae;Sohn, Kyounghee;Yang, Eun Kyung
    • Archives of Plastic Surgery
    • /
    • v.33 no.6
    • /
    • pp.723-731
    • /
    • 2006
  • Purpose: Collagen is the principal structural biomolecule in cartilage extracellular matrix, which makes it a logical target for cartilage engineering. In this study, porous type I collagen scaffolds were cross-linked using dehydrothermal(DHT) treatment and/or 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide(EDC), in the presence and absence of chondroitin-6-sulfate(CS) for cartilage regeneration. Methods: Cartilage defects were created in the proximal part of the ear of New Zealand rabbits. Four types of scaffolds(n=4) were inserted. The types included DHT cross-linked(Group 1), DHT and EDC cross- linked(Group 2), CS added DHT cross-linked(Group 3), and CS added DHT and EDC cross-linked(Group 4). Histomorphometric analysis and cartilage-specific gene expression of the reconstructed tissues were evaluated respectively 4, 8, and 12 weeks after implantation. Results: The largest quantity of regenerated cartilage was found in DHT cross-linked groups 1 and 3 in the 8th week and then decreased in the 12th week, while calcification increased. Calcification was observed from the 8th week and the area increased in the 12th week. Group 4 was treated with EDC cross-linking and CS, and the matrix did not degrade in the 12th week. Cartilage-specific type II collagen mRNA expression increased with time in all groups. Conclusion: CS did not increase chondrogenesis in all groups. EDC cross-linking may prevent chondrocyte infiltration from the perichondrium into the collagen scaffold.

Retarded Dissolution of Ibuprofen in Gelatin Microcapsule by Cross-Linking with Glutaradehyde

  • Yong, Chul-Soon;Li, Dong-Xun;Oh, Dong-Hoon;Kim, Jung-Ae;Yoo, Bong-Kyu;Woo, Jong-Soo;Rhee, Jong-Dal;Choi, Han-Gon
    • Archives of Pharmacal Research
    • /
    • v.29 no.6
    • /
    • pp.520-524
    • /
    • 2006
  • Ibuprofen-loaded gelatin microcapsule, a solid form of microcapsules simultaneously containing ethanol and ibuprofen in water-soluble gelatin shell was previously reported to improve the dissolution of drug. In this study, to retard the initial high dissolution of ibuprofen from gelatin microcapsule, the ibuprofen-loaded cross-linked gelatin microcapsule was prepared by treating an ibuprofen-loaded gelatin microcapsule with glutaraldehyde and its dissolution was evaluated compared to ibuprofen powder and gelatin microcapsule. The ibuprofen-loaded crosslinked microcapsule treated with glutaraldehyde for 10 and 60 sec gave significantly higher dissolution rates than did ibuprofen powder. Furthermore, the dissolution rate of ibuprofen from the cross-linked microcapsule treated for 10 sec was similar to that from gelatin microcapsule. However, the dissolution rate of ibuprofen from the cross-linked microcapsule treated for 60 sec decreased significantly compared to gelatin microcapsule, suggesting that the treatment of gelatin microcapsule with glutaraldehyde for 60 sec could cross-link the gelatin microcapsule. Furthermore, the cross-linking of gelatin microcapsule markedly retarded the release rate of ibuprofen in pH 1.2 simulated gastric fluid compared to gelatin microcapsule. However, the cross-linking of gelatin microcapsule with glutaraldehyde hardly changed the size of gelatin microcapsules, ethanol and ibuprofen contents encapsulated in gelatin microcapsule. Thus, the ibuprofen-loaded cross-linked gelatin microcapsule could retard the initial high dissolution of poorly water-soluble ibuprofen.

Sequence Specificity for DNA Interstrand cross-linking induced by anticancer drug chlorambucil

  • Yoon, Jung-Hoon;Lee, Chong-Soon
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.550-554
    • /
    • 1997
  • Chlorambucil is known to alkylate primarily N7 of guanine and N3 of adenine to induce DNA monofunctional adducts and interstrand cross-links (ISC). We have investigated the sequence specificity for DNA ISC induced by chlorambucil using duplex oligomers containing a defined cross-linkable sequences $ 5^{I}-A*TT, 5^{I}-G*TTor5^{I}-G*CC$ under bar which asterisk indicates the potential cross-linking site and underlined base indicates the potential cross-linking site on the opposite strand. An analysis of 20% denaturing polyacrylamide gel electrophoresis showed that chlorambucil was albe to induce DNA ISC in the duplex oligomers containing a sequence $5^I-GCC$. The formation of DNA ISC was not observed in the duplex oligomers containing sequences $5^I-ATT$. or $5^I-GTT$. These results indicate that chlorambucil induces guanine-guanine DNA ISC but not guanine-adenine or adenine-adenine DNA ISC. In addition, we have tested the ability of chlorambucil to induce DNA ISC within $5^I-GNNC$ or $5^I-GNNC$sequences using duplex oligomers containing the sequence$5^I-G^4G^3G^2^C$. The result of DNA strand cleavage assay showed that DNA ISC was formed at the $5^I-GGC$ sequence (an 1,3 cross-link, $G^1-G^3$) but not at $5^I-GGGC$ (an 1,4 cross-link, $G^1-G^4$) or $5^I-GC$ sequence (an 1,2 cross-link, $G^1-G^2$).

  • PDF

In-Situ Cross-linked Polymer Electrolyte Membranes from Thermally Reactive Oligomers for Direct Methanol Fuel Cells

  • Kim, Hae-Kyoung;Lee, Won-Mok;Park, Sam-Dae;Chang, Yoon-Ju;Jung, Jin-Chul;Chang, H.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.271-271
    • /
    • 2006
  • The present article describes a novel method of preparing the sulfonated polysulfone-based PEMs for DMFC, which are excellent in film quality, proton conductivity, methanol impermeability and mechanical properties. No depression in film quality or difficulty in film preparation is observed, even though sulfonated group of the PEMs are kept as high as 70 mol %. Allyl-terminated cooligo-PESs containing the organic sulfonate groups were solvent-cast into films and then thermally treated for cross-linking. Cross-linked sulfonated polysulfone-based PEMs gave unprecedented reduction of methanol cross-over and high ionic conductivity through in-situ thermal polymerization and cross-linking of telechelic sulfonated sulfone oligomers during a membrane preparation.

  • PDF

Immobilization of Trypsin on Chitosan Nonwoven Using Glutaraldehyde (글루타알데하이드에 의한 키토산 부직포에 트립신 고정화)

  • Kim, Jung Soo;Lee, So Hee;Song, Wha Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.7
    • /
    • pp.852-863
    • /
    • 2013
  • We investigate the immobilization of trypsin on chitosan nonwoven using glutaraldehyde (GA). The conditions for trypsin on chitosan nonwoven and GA cross-linking were optimized depending on different conditions. The order of GA cross-linking was determined by the activity of immobilized trypsin. The characteristics of chitosan nonwoven were examined by Fourier-transform infrared (FT-IR) and surface morphology analyses (SEM). Results showed that the optimal treatment conditions for trypsin on chitosan nonwoven were as follows: pH 8.5; temperature $37^{\circ}C$; trypsin concentration 15% (o.w.f); and treatment time 60 min. Those for GA cross-linking were: pH 10.0; GA concentration 3% (v/v); and treatment time 120 min. FT-IR analysis showed that GA was cross-linked on chitosan nonwoven. The SEM analysis also showed that trypsin was immobilized on chitosan nonwoven.