• Title/Summary/Keyword: Cross linker

Search Result 93, Processing Time 0.017 seconds

The Efficacy of β-cyclodextrin/polyethyleneimine/silk Fibroin Hydrogel in Healing Burnt Wound (사이클로덱스트린/폴리에틸렌이민/실크 피브로인 수화겔의 화상치유효능)

  • Seo, Seung Ree;Lee, Mi Sun;Kim, Jin-Chul
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.599-604
    • /
    • 2011
  • In this study, we investigated the efficacy of ${\beta}$-cyclodextrin (${\beta}CD$) hydrorogel containing silk fibroin (SF) on healing burnt wound. Tosyl ${\beta}CD$ was conjugated to polyethyleneimine (PEI) using epichlorohydrin (EPI) as a cross-linker. The ${\beta}CD/PEI/SF$ hydrogel was applied on the back of mouse and then the efficacy of hydrogel was compared with both positive control group and negative control group. There was no wound healing efficacy showed neither in the drug loaded ${\beta}CD/PEI/SF$ hydrogel group nor in the drug unloaded ${\beta}CD/PEI/SF$ hydrogel group. On the other hand, in the positive control group, a significant reduction of the wound size after the usage of OTC hydrorogel was obtained. The burn-healing histological result showed a similar phenomenon. After hematoxylin-eosin staining the skin induced by burning, and the epithelial growth observed in the dermis, the efficacy of ${\beta}CD/PEI/SF$ hydrogel in healing burnt wound could not be clearly identified.

Adsorption of Antibiotics on Serum Albumin Nanoparticle (혈청 알부민 나노입자를 이용한 항생제 흡착)

  • Kim, Hyunji;Lim, Sung In
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Antibiotics are compounds broadly used to treat patients with infectious diseases and to enhance productivity in agriculture, fisheries, and livestock industries. However, due to the overuse of antibiotics and their low biodegradability, a substantial amount of antibiotics is leaking into the sewer, subsequently resulting in pollution and the emergence of antibiotic-resistant bacteria. This study explores biodegradable serum albumin's potential as an adsorbent to remove antibiotics from water. Serum albumin is a natural blood protein that transports various metabolites and hormones to all tissues' extravascular spaces. While serum albumin is highly water-soluble, it has intrinsic binding sites which readily accommodate ionic, hydrophilic, or hydrophobic molecules, rendering it a good building block for a nano-adsorbent. To induce coacervation, a desolvating agent, ethanol, was added dropwise into the aqueous albumin solution, resulting in dehydration and liquid-liquid phase separation of albumins into albumin nanoparticles within a size range of 150 ~ 170 nm. The addition of glutaraldehyde as a cross-linker improved the size stability and homogeneity of albumin nanoparticles. Adsorption of amoxicillin antibiotics on albumin nanoparticles was dependent upon glutaraldehyde concentration used in desolvation and pH during adsorption. The maximum adsorption capacity measured by spectrophotometry was found to be 12.4 micrograms of amoxicillin per milligram of albumin nanoparticle. These results demonstrate serum albumin's potential as a building block for fabricating a natural nano-adsorbent to remove antibiotics from water.

A New Attempt to Establish the Extrinsic Aging Hair Model to Evaluate The Response to Aging in Physical Property (모발 노화에 따른 물성변화와 외인성 노화모델의 개발)

  • Song, Sang-Hun;Choi, Wonkyung;Park, Hyunsub;Lim, Byung Tack;Park, Kyoung Ran;Kim, Younghyun;Park, Sujin;Son, Seong Kil;Lee, Sang-Min;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.185-198
    • /
    • 2019
  • Human tissue undergoes aging by the oxidant damage via structural change and its physical properties. The skin aging process is well known and many evaluations have been conducted. However, studies on hair aging were relatively few and thus care for aging hair is difficult. This study aims to fabricate an aging hair and identify anti-aging effect with known ingredient in anti-aging. First of all, physical properties of aging hair of age 60s by physiologically intrinsic factors were compared to those of the hair made by various extrinsic factors such as several chemical reactions and iteration numbers of the treatments. The extrinsic aging hair of this study relates to the less amount of lipid and to the hair of perm treated once accordingly, wherein several physical properties, preferably comprise roughness and tensile strength, present a novel concept of the intrinsic aging hair. The penetration of peptide into the aging hair was leading the extrinsic hair towards more structurally directed a younger hair. In addition to the structural change, the penetration of the peptide enhanced texture and tensile strength of the aging hair. These patterns have been also found in addition of propolis. For the first time, these qualitative studies exhibit that indeed our extrinsic aging hair well describes the anti-aging efficacy as a receptor for a cross-linker and the ingredients of human hair.