• Title/Summary/Keyword: Cross flow heat exchanger

Search Result 75, Processing Time 0.027 seconds

Aluminum and Plastic Heat Exchange Element : A Performance Comparison for Cooling of Telecommunication Cabinet (통신 함체 냉각용 알루미늄과 플라스틱 열교환 소자의 성능 비교)

  • Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.279-288
    • /
    • 2017
  • Heat generation rate in a telecommunication cabinet increases due to the continued usage of mobile devices. Insufficient removal of heat intensifies the cabinet temperature, resulting in the malfunction of electronic devices. In this study, we assessed both aluminum and plastic heat exchangers used for cooling of the telecommunication cabinet, and compared the results against theoretical predictions. The aluminum heat exchanger was composed of counter flow parallel channels of 4.5 mm pitch, and the plastic heat exchangers were composed of cross flow triangular channels of 2.0 mm pitch. Samples were made by installing two plastic heat exchangers in both series and parallel. Results showed that the heat transfer rate was highest for the series cross flow heat exchanger, and was least for the aluminum heat exchanger. The temperature efficiency of the series cross flow heat exchanger was 59% greater than that of the aluminum heat exchanger, and was 4.3% greater than that of the parallel cross flow heat exchanger. In contrast, the pressure drop of the parallel cross flow heat exchanger was significantly lower than other samples. The heat exchange efficiency was also the largest for the parallel cross flow heat exchanger. The theoretical analysis predicted the temperature efficiency to be within 3.3%, and the pressure drop within 6.1%.

Heat Exchange Element Made of Plastic for Cooling of Telecommunication Cabinet (통신 함체 냉각용 플라스틱 재질의 열교환 소자)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.702-708
    • /
    • 2017
  • The heat generation rate in a telecommunications cabinet keeps increasing due to the increased usage of mobile devices. Insufficient removal of the heat increases the cabinet temperature, which results in the malfunction of the electronic devices. In this study, tests were conducted on aluminum and plastic heat exchangers for cooling a telecommunications cabinet, and the results were compared with theoretical predictions. The aluminum heat exchanger comprised counter flow parallel channels with 4.5-mm pitch, and the plastic heat exchangers comprised cross or cross-counter flow triangular channels with 2.0-mm pitch. The volume of the cross flow heat exchanger was the same as that of the aluminum heat exchanger, and the volume of the cross-counter heat exchanger was 33% larger than that of the aluminum heat exchanger. The results show that the heat transfer rate is the highest for the cross-counter heat exchanger and lowest for the aluminum one. The temperature efficiency of the cross-counter heat exchanger was 56% higher than that of the aluminum one and 20% higher than that of the cross flow heat exchanger. The pressure drop of the cross-counter heat exchanger was approximately the same as that of the aluminum one. The heat exchange efficiency was the highest for the cross-counter heat exchanger and lowest for the cross flow heat exchanger. The theoretical analysis somewhat overestimated or underestimated the data.

Analysis of Heat Transfer Characteristics of Internal Heat Exchanger for $CO_2$ Refrigerator using the Hardy-Cross Method (Hardy-Cross법을 이용한 $CO_2$ 냉동기용 내부열교환기의 열전달 특성 연구)

  • Kang Hee-Dong;Kim Ook Joong;Seo Tae-Beom
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • The heat transfer characteristics of an internal heat exchanger for $CO_2$ refrigeration cycle are numerically investigated. The numerical model is verified using the published experimental results for the concentric tube type internal heat exchanger. The Hardy-Cross Method gives very good agreement between the calculation and experimental results on the heat transfer rates and exit temperatures. Also, appropriate combination of heat transfer correlations is found. The operating parameters of the heat exchanger are calculated at transcritical region of $CO_2.$ The heat transfer rate of the counter flow type heat exchanger shows the $32\%$ greater than that of the parallel flow type heat exchanger. The increase of heat exchanger length enhances the heat transfer rate. The thermodynamic characteristics and heat transfer coefficient of $CO_2$ in the internal heat exchanger are estimated.

Performance Analysis and Testing of a Cross-Flow Aluminum Heat Exchanger for Kitchen Ventilation (주방환기용 직교류 알루미늄 열교환기의 성능해석 및 시험)

  • Kim N.H.;Cho J.P.;Han S.P.;Choi J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Thermal performance model was developed for a cross-flow aluminum heat exchanger with relatively short passage. Appropriate heat transfer coefficient and friction factor equations for laminar channel flow were obtained considering developing regions. The heat exchanger was analyzed using the unmixed cross-flow ${\epsilon}$-NTU relationship considering leak-age between streams. Thermal contact between corrugations and plates was also considered. Tests were separately conducted for two samples - one made of non-treated aluminum sheets, and the other made of varnish-treated ones. The samples were made by stacking corrugations and plates one after another. The model adequately predicted the thermal performance and pressure drop of the non-treated heat exchanger. The thermal performance of the varnish-treated one was $7{\sim}12%$ overpredicted, and the pressure drop of the varnished-treated heat exchanger was $5{\sim}15%$ underpredicted. The air leakage ratio of the non-treated heat exchanger was $23{\sim}26%$. The ratio decreased to less than $10%$ with the varnish treatment.

An Experimental Study for Performance Evaluation of a Ceramic Heat Exchanger (세라믹 열교환기의 성능평가를 위한 실험적 연구)

  • Choi, Hyun-Soo;Shin, Dong-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2011
  • Exhaust gas of an industrial furnace used at such as metallurgy or ceramic manufacturing usually contains thermal energy with high temperature which can be recycled by heat exchanger. However, when the temperature of the exhaust gas is high such as more than $1,000^{\circ}C$, ordinary metallic heat exchanger cannot fully recover the heat due to the limitation of operating temperature depending on the material property. In the present study, a compact ceramic heat exchanger of cross flow type is introduced and evaluated by heat exchange rate and operating temperature. The ceramic heat exchanger can endure the gas temperature more than $1,300^{\circ}C$, and its volumetric heat exchanging rate exceeds 1 MW/$m^3$. The experimental data is also compared with the previous numerical result which shows reasonable agreement. Meanwhile, the gas leakage rate is measured to be about 3~4%, and heat loss to environmental air is about 23~26% of the fuel energy.

Heat Transfer Enhancement in Cross-flow Heat Exchanger Using Vortex Generator (와류발생기를 사용한 직교류 열교환기의 열전달 촉진)

  • Yoo, Seong-Yeon;Kwon, Hwa-Kil;Lee, Sang-Sub;Kim, Byeong-Chae;Park, Dong-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.61-66
    • /
    • 2003
  • Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator.

  • PDF

Flow and heat transfer analysis for the performance improvement of cross-flow fin-tube heat exchangers (에어컨 실외기용 휜-관 직교형 열교환기의 열, 유동 해석 및 휜 성능 개선을 위한 연구)

  • An C. S.;Choi D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.183-189
    • /
    • 2004
  • The flow and the heat transfer about the cross-flow fin-tube heat exchanger in an out-door unit of a heat pump system has been numerically Investigated. Using the general purpose analysis code, FLUENT, the Navier-Stokes equations and the energy equation are solved for the three dimensional computation domain that encompasses multiple rows of the fin-tube. The temperature on the fin and tube surface is assumed constant but compensated later through the fin efficiency when predicting the heat-transfer rate. The contact resistance is also taken into consideration. The flow and temperature fields for a wide range of inlet velocity and fin-tube arrangements are examined and the results are presented in the paper. The details of the flow are very well captured and the heat transfer rate for a range of inlet velocity is in excellent agreement with the measured data. The flow solution provides the effective permeability and the inertial resistance factor of the heat exchanger if the exchanger were to be approximated by the porous medium. This information is essential in carrying out the global flow field calculation which, in turn, provides the inlet velocity lot the microscopic temperature-field calculation of the heat exchanger unit.

  • PDF

An Experimental Study on Heat Transfer Enhancement of Cross Flow Heat Exchanger Using Screen (스크린을 이용한 직교류 열교환기의 열전달 촉진에 관한 연구)

  • Yoo, Seong-Yeon;Jang, Kwang-Il;Kwon, Hwa-Kil
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.185-190
    • /
    • 2007
  • For the successful design of heat exchangers, it is very important to understand local heat transfer characteristics on the circular cylinder of the cross flow heat exchangers. In this study, the heat exchanger using screen is developed to enhance heat transfer. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients in the heat exchanger. The experiments are performed for single circular tube, in-line array tube bank with and without heat transfer promoter. Local Nusselt numbers of single circular tube and tube bank with heat transfer promoter are investigated and compared to those of without heat transfer promoter.

  • PDF

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

Study on the Performance Evaluation of Smart Heating and Cooling Heat Pump System in a Balancing Well Cross-Conditioned Ground Heat Exchanger (Balancing Well 교차혼합 지중열교환기의 스마트 냉난방 히트펌프 시스템의 성능평가에 관한 연구)

  • Lee, Changhee;Kim, Donggyu;Yu, Byeoungseok;Kim, Booil
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a single hole operation method using a balancing well-cross-mixed underground heat exchanger, and conducted thermal performance studies of an SCW-type underground heat exchanger using a two-well. The study attempted to change the existing operating method of the two adjacent SCW underground heat exchangers with one ball each. The SCW-type geothermal heat exchanger is considered to enable up to 20% of bleed discharge at maximum load, which makes groundwater usage unequal. The efficiency factor of the geothermal system was improved by constructing the discharged water by cross-mixing two balancing wells to prevent the discharge of groundwater sources and keep the temperature of the underground heat exchanger constant. As a result of the cooling and heating operation with the existing SCW heat exchange system and the balancing well-cross-mixed heat exchange system, the measured performance coefficient improved by 23% and 12% in cooling and heating operations, respectively. In addition, when operating with a balanced cross-mixing heat exchange system, it has been confirmed that the initial basement temperature is constant with a standard deviation of 0.08 to 0.12℃.