• Title/Summary/Keyword: Cross Bearing

Search Result 259, Processing Time 0.324 seconds

상대재와 분위기에 따른 순철의 미끄럼 마멸 기구 분석 (Analysis of the Sliding Wear Mechanism of Pure Iron Tested Against Different Counterparts in Various Atmospheres)

  • 구본우;권혁우;김용석
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.365-371
    • /
    • 2017
  • During sling wear of a ferrous metal, a surface layer is formed. Its microstructure, constituting phases, and mechanical property are different from those of the original wearing material. Since wear occurs at the layer, it is important to characterize the layer and understand how wear rate changes with different layers. Various layers are formed depending on external wear conditions such as load, sliding speed, counterpart material, and environmental conditions. In this research, sliding wear tests of pure iron were carried out against two different counterparts (AISI 52100 bearing steel and $Al_2O_3$) in the air and in an inert Ar gas atmosphere. Pure iron was employed to exclude other effects from secondary phases in steel on the wear. Wear tests were performed at room temperature. Worn surfaces, wear debris, and cross-sections were analyzed after the test. It was found that these two different counterparts and environments produced diverse layers, resulting in significant changes in wear rate. Against the bearing steel, pure iron showed higher wear rate in an Ar atmosphere due to severe adhesion than that in the air. On the contrary, the iron showed much higher wear rate in the air against $Al_2O_3$. Different layers and wear rates were analyzed and discussed by oxidation, severe plastic deformation, and adhesion at wearing surfaces.

Inter- and Intra- Rater Reliability of Navicular Drop Tests Position

  • Kim, So-yeon;Yoo, Jung-eun;Woo, Da-hyun;Jung, Bo-young;Choi, Bo-ram
    • 대한물리치료과학회지
    • /
    • 제26권1호
    • /
    • pp.9-14
    • /
    • 2019
  • Background: Pes planus, or flat foot, causes lower limb malalignment and foot pain during walking or exercise. Therefore, a highly reliable evaluation method to accurately diagnose flat feet is necessary. This study investigated the intra-and inter-rater reliability of the navicular drop test in different postures. Design: Cross sectional study. Methods: Forty healthy volunteers performed the navicular drop test in three different combinations of non-weight-bearing and weight-bearing postures (standing/standing, sitting/sitting, and sitting/standing). Two examiners alternately performed the measurements five times in each subject, and in each posture. Significant differences in measurements were obtained among the three postures, with the highest navicular drop being observed in the sitting/standing posture. Results: Inter-rater reliability was high in the sitting/standing and sitting/sitting postures. Intra-rater reliability was high in all three postures. In the sitting/sitting and sitting/standing postures, large navicular drop values and high inter- and intra-rater reliability were observed. Conclusion: Therefore, the sitting/standing and sitting/sitting postures are recommended for use in navicular drop tests to diagnose flat feet.

Axial compressed UHPC plate-concrete filled steel tubular composite short columns, Part I: Bearing capacity

  • Jiangang Wei;Zhitao Xie;Wei Zhang;Yan Yang;Xia Luo;Baochun Chen
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.405-421
    • /
    • 2023
  • An experimental study on six axially-loaded composite short columns with different thicknesses of steel tube and that of the concrete plate was carried out. Compared to the mechanical behavior of component specimens under axially compressed, the failure modes, compression deformation, and strain process were obtained. The two main parameters that have a significant enhancement to cross-sectional strength were also analyzed. The failure of an axially loaded UHPC-CFST short column is due to the crushing of the UHPC plate, while the CFST member does reach its maximum resistance. A reduction coefficient K'c, related to the confinement coefficient, is introduced to account for the contribution of CFST members to the ultimate load-carrying capacity of the UHPC-CFST composite short columns. Based on the regression analysis of the relationship between the confinement index ξ and the value of fcc/fc, a unified formula for estimating the axial compressive strength of CFST short columns was proposed, combined with the experimental results in this research, and an equation for reliably predicting the strength of UHPC-CFST composite short columns under axial compression were also proposed.

Study on seismic performance of SRC special-shaped columns with different loading angles

  • Qu, Pengfei;Liu, Zuqiang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.789-801
    • /
    • 2022
  • In order to study the influence of loading angles on seismic performance of steel reinforced concrete (SRC) special-shaped columns, cyclic loading tests and finite element analysis (FEA) were both carried out. Seven SRC special-shaped columns, including two L-shaped columns, three T-shaped columns and two cross-shaped columns, were tested, and the failure patterns of the columns with different loading angles were obtained. Based on the tests, the FEA models of SRC special-shaped columns with different loading angles were established. According to the simulation results, hysteretic curves and seismic performance indexes, including bearing capacity, ductility, stiffness and energy dissipation capacity, were analyzed in detail. The results showed that the failure patterns were different for the columns with the same section and different loading angles. With the increasing of loading angles, the hysteretic curves became fuller and the bearing capacity and initial stiffness appeared increasing tendency, but the energy dissipation capacity changed insignificantly. When the loading angle changed, the ductility got better with the larger area of steel at the failure side for the unsymmetrical section and near the neutral axis for the symmetrical section, respectively.

The Wear Rate and Survivorship in Total Hip Arthroplasty Using a Third-generation Ceramic Head on a Conventional Polyethylene Liner: A Minimum of 15-year Follow-up

  • Bum-Jin Shim;Sung-Jin Park;Chan Ho Park
    • Hip & pelvis
    • /
    • 제34권2호
    • /
    • pp.115-121
    • /
    • 2022
  • Purpose: The purpose of this study was to evaluate the wear and survival rates of third-generation ceramic heads on a conventional ultra-high molecular weight polyethylene liner. Materials and Methods: A total of 160 hips (147 patients with a mean age of 55.9 years) who underwent total hip arthroplasty using the third-generation ceramic head on a conventional polyethylene liner from March 1998 to August 2003 were reviewed retrospectively. Evaluation of the wear rate for 56 hips (49 patients) followed-up for at least 15 years was performed using the PolyWare program version 8 (Draftware Developers, USA). The Kaplan-Meier survivorship was also evaluated. Results: Linear wear and volumetric wear rates were 0.11±0.47 mm/year and 32.75±24.50 mm3/year, respectively. Nine revisions were performed during the follow-up period because of cup or stem loosening. The Kaplan-Meier survival rate, using cup revision or total revision total hip arthroplasty (THA) as the endpoint of analysis, was 93.7% at 15 years and 73.6% at 20 years. Conclusion: Because all revisions were performed between 15 and 20 years in our study, surgeons should pay greater attention to patients who underwent THA with ceramic-on-polyethylene bearing from 15 years postoperatively. Contemporary alumina ceramic on highly cross-linked polyethylene could certainly be a good alternative bearing couple providing better longevity.

Dual-loss CNN: A separability-enhanced network for current-based fault diagnosis of rolling bearings

  • Lingli Cui;Gang Wang;Dongdong Liu;Jiawei Xiang;Huaqing Wang
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.253-262
    • /
    • 2024
  • Current-based mechanical fault diagnosis is more convenient and low cost since additional sensors are not required. However, it is still challenging to achieve this goal due to the weak fault information in current signals. In this paper, a dual-loss convolutional neural network (DLCNN) is proposed to implement the intelligent bearing fault diagnosis via current signals. First, a novel similarity loss (SimL) function is developed, which is expected to maximize the intra-class similarity and minimize the inter-class similarity in the model optimization operation. In the loss function, a weight parameter is further introduced to achieve a balance and leverage the performance of SimL function. Second, the DLCNN model is constructed using the presented SimL and the cross-entropy loss. Finally, the two-phase current signals are fused and then fed into the DLCNN to provide more fault information. The proposed DLCNN is tested by experiment data, and the results confirm that the DLCNN achieves higher accuracy compared to the conventional CNN. Meanwhile, the feature visualization presents that the samples of different classes are separated well.

Effects of foot pressure using the elastic band with rings during sit-to-stand in persons with stroke

  • Hwang, Young-In;Kim, Ki-Song
    • Physical Therapy Rehabilitation Science
    • /
    • 제6권4호
    • /
    • pp.159-163
    • /
    • 2017
  • Objective: Persons with stroke have a tendency to exhibit asymmetric weight-bearing during sit-to-stand because due to the attempt to support themselves with the non-paretic foot. However, there are few devices that can assist with sit-to-stand (STS) performance. This study was designed to investigate the use of the elastic band with rings (EBR) in improving weight-bearing effectively in persons with stroke during STS training. Design: Cross-sectional study. Methods: Thirteen stroke survivors participated in the study. An EBR was applied onto the patient during STS activity. The foot pressure was measured before and after wearing the EBR, with a 5-minute rest period between measurements. Subjects were asked to perform each test twice with and without the EBR. Bilateral feet pressures were measured with standing posture being divided into the forward and backward aspects. The foot contact pressure during STS activity was measured with the CONFORMat System. Results: With EBR, the forward pressure of the affected foot significantly increased while the less-affected forward foot pressure significantly decreased (p=0.015 and p=0.023, respectively). The backward foot pressure did not differ significantly in the two limbs, and there was no difference with and without the EBR in terms of the total pressure of the affected foot. There was a significant difference with and without the EBR in the total pressure of the less-affected foot (p<0.05). Conclusions: STS training with the EBR has been shown to improve weight-bearing of both feet while decreasing the total pressure of the less-affected foot in stroke survivors. Therefore, we suggest that the EBR is a useful tool for STS training for persons with stroke in the clinic.

스트레스 리본 보도교의 설계절차 (Design Procedure of Stress Ribbon Pedestrian Bridges)

  • 한기장;최영구;박경룡;김기동
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2474-2480
    • /
    • 2013
  • 스트레스 리본 보도교는 특정한 새그을 갖는 지지 케이블에 교량 길이에 비하여 단면 두께가 아주 작은 Deck을 설치하고 프리스트레스를 도입함으로써 발생되는 긴장된 바닥판의 축력으로 외력의 대부분을 저항하는 구조물이다. 일반 구조물 설계와 달리 스트레스 리본 보도교의 설계는 Deck 단면의 가정 이외에도 지지 및 긴장 케이블량과 긴장 케이블 긴장력을 가정하여야 하기 때문에 보다 많은 반복과정이 발생한다. 본 논문에서는 이러한 반복과정을 최소한으로 줄이고자 지지 및 긴장 케이블량과 긴장력을 합리적으로 가정할 수 있는 회귀분석식이 새그비 1/30, 1/40, 그리고 1/50를 갖는 교량길이 80m에 대하여 제안되었다.

스트레인 게이지를 이용한 5만 DWT급 석유화학제품운반선의 베어링 반력 및 선체변형량 분석에 관한 연구 (A study on the analysis of bearing reaction forces and hull deflections affecting shaft alignment using strain gauges for a 50,000 DWT oil/chemical tanker)

  • 이재웅
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.288-294
    • /
    • 2016
  • 선박이 고출력화, 대형화 됨에 따라 추진축의 강성은 증가한 반면에 선체는 고장력 후판을 사용하므로 이전의 선체보다 훨씬 더 쉽게 변형되는 실정이다. 이는 기존의 선박보다 더욱 정교한 축계정렬이 요구됨을 의미한다. 본 연구에서는 최근 친환경 고효율 선박으로 등장한 5만DWT급 석유화학제품운반선을 대상으로 스트레인게이지법을 이용한 계측을 실시하고 축계 베어링 반력 및 선체 변형량 분석을 수행하였다. 계측은 선박의 통상 흘수 변화를 고려한 5개 조건에서 수행하여 추진축계가 선체 변형의 영향 하에서도 허용치를 만족하는지 여부를 확인하였다. 또한 이론적 계산방법, 잭업법 및 스트레인게이지법의 결과를 상호 비교하여 해석의 신뢰성을 교차검증하였다.

Effect of leg weight shifting on muscle activation of the trunk and lower extremity during trunk flexion and extension performance

  • Shim, Suyoung;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • 제7권1호
    • /
    • pp.41-47
    • /
    • 2018
  • Objective: To investigate the effect of performing three different toe touch (TT) task condition on the activities of four different muscles using surface electromyography (sEMG) in healthy young adults. Design: Cross-sectional study. Methods: A total of 20 healthy young adults (6 males, 14 females) voluntarily participated in this study. All subject randomly performed three different TT task conditions as follows: general toe-touch (GTT) task, one side toe touch (TT) task during weight bearing, and one side foward toe touch (FTT) task during weight bearing. The muscle activities of erector spinae (ES), gluteus maximus (GM), hamstring (HAM), tibialis anterior (TA) muscles during the TT task were measured using sEMG. Subject performed each of the three conditions three time in random order and mean values were obtained. Results: With the trunk flexion period, the TT and FTT showed significantly greater muscle activity in the GM, HAM and TA compared to the GTT task (p<0.05). The TT position showed significantly greater HAM muscle activity than the GTT position. The dominant and nondominant ES muscle activity was significantly greater in the FTT compared to the GTT position (p<0.05). The dominant GM, HAM, and TA was significantly greater in the TT and FTT compared to the GTT position (p<0.05). Although the dominant ES was significantly greater in the TT and FTT compared to the GTT position (p<0.05), the dominant GM muscle activity was signifcantly greater in the TT compared with the GTT position (p<0.05). Conclusions: These findings may be applicable within the clinical field for selective trunk and lower extremity muscle activation and basic biomechanics purpose.