• Title/Summary/Keyword: Crops Information

Search Result 522, Processing Time 0.026 seconds

Crop Monitoring Technique Using Spectral Reflectance Sensor Data and Standard Growth Information (지상 고정형 작물 원격탐사 센서 자료와 표준 생육정보를 융합한 작물 모니터링 기법)

  • Kim, Hyunki;Moon, Hyun-Dong;Ryu, Jae-Hyun;Kwon, Dong-Won;Baek, Jae-Kyeong;Seo, Myung-Chul;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1199-1206
    • /
    • 2021
  • Accordingly, attention is also being paid to the agricultural use of remote sensing technique that non-destructively and continuously detects the growth and physiological status of crops. However, when remote sensing techniques are used for crop monitoring, it is possible to continuously monitor the abnormality of crops in real time. For this, standard growth information of crops is required and relative growth considering the cultivation environment must be identified. With the relationship between GDD (Growing Degree Days), which is the cumulative temperature related to crop growth obtained from ideal cultivation management, and the vegetation index as standard growth information, compared with the vegetation index observed with the spectralreflectance sensor(SRSNDVI & SRSPRI) in each rice paddy treated with standard cultivation management and non-fertilized, it was quantitatively identified as a time series. In the future, it is necessary to accumulate a database targeting various climatic conditions and varieties in the standard cultivation management area to establish a more reliable standard growth information.

Intelligent Smart Farm A Study on Productivity: Focused on Tomato farm Households (지능형 스마트 팜 활용과 생산성에 관한 연구: 토마토 농가 사례를 중심으로)

  • Lee, Jae Kyung;Seol, Byung Moon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.3
    • /
    • pp.185-199
    • /
    • 2019
  • Korea's facility horticulture has developed remarkably in a short period of time. However, in order to secure international competitiveness in response to unfavorable surrounding conditions such as high operating costs and market opening, it is necessary to diagnose the problems of facility horticulture and prepare countermeasures through analysis. The purpose of this study was to analyze the case of leading farmers by introducing information and communication technology (ICT) in hydroponic cultivation agriculture and horticulture, and to examine how agricultural technology utilizing smart farm and big data of facility horticulture contribute to farm productivity. Crop growth information gathering and analysis solutions were developed to analyze the productivity change factors calculated from hydroponics tomato farms and strawberry farms. The results of this study are as follows. The application range of the leaf temperature was verified to be variously utilized such as house ventilation in the facility, opening and closing of the insulation curtain, and determination of the initial watering point and the ending time point. Second, it is necessary to utilize water content information of crop growth. It was confirmed that the crop growth rate information can confirm whether the present state of crops is nutrition or reproduction, and can control the water content artificially according to photosynthesis ability. Third, utilize EC and pH information of crops. Depending on the crop, EC values should be different according to climatic conditions. It was confirmed that the current state of the crops can be confirmed by comparing EC and pH, which are measured from the supplied EC, pH and draining. Based on the results of this study, it can be confirmed that the productivity of smart farm can be affected by how to use the information of measurement growth.

Classification of Crop Cultivation Areas Using Active Learning and Temporal Contextual Information (능동 학습과 시간 문맥 정보를 이용한 작물 재배지역 분류)

  • KIM, Ye-Seul;YOO, Hee-Young;PARK, No-Wook;LEE, Kyung-Do
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.76-88
    • /
    • 2015
  • This paper presents a classification method based on the combination of active learning with temporal contextual information extracted from past land-cover maps for the classification of crop cultivation areas. Iterative classification based on active learning is designed to extract reliable training data and cultivation rules from past land-cover maps are quantified as temporal contextual information to be used for not only assignment of training data but also relaxation of spectral ambiguity. To evaluate the applicability of the classification method proposed in this paper, a case study with MODIS time-series vegetation index data sets and past cropland data layers(CDLs) is carried out for the classification of corn and soybean in Illinois state, USA. Iterative classification based on active learning could reduce misclassification both between corn and soybean and between other crops and non crops. The combination of temporal contextual information also reduced the over-estimation results in major crops and led to the best classification accuracy. Thus, these case study results confirm that the proposed classification method can be effectively applied for crop cultivation areas where it is not easy to collect the sufficient number of reliable training data.

Development of crop harvest prediction system architecture using IoT Sensing (IoT Sensing을 이용한 농작물 수확 시기 예측 시스템 아키텍처 개발)

  • Oh, Jung Won;Kim, Hangkon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • Recently, the field of agriculture has been gaining a new leap with the integration of ICT technology in agriculture. In particular, smart farms, which incorporate the Internet of Things (IoT) technology in agriculture, are in the spotlight. Smart farm technology collects and analyzes information such as temperature and humidity of the environment where crops are cultivated in real time using sensors to automatically control the devices necessary for harvesting crops in the control device, Environment. Although smart farm technology is paying attention as if it can solve everything, most of the research focuses only on increasing crop yields. This paper focuses on the development of a system architecture that can harvest high quality crops at the optimum stage rather than increase crop yields. In this paper, we have developed an architecture using apple trees as a sample and used the color information and weight information to predict the harvest time of apple trees. The simple board that collects color information and weight information and transmits it to the server side uses Arduino and adopts model-driven development (MDD) as development methodology. We have developed an architecture to provide services to PC users in the form of Web and to provide Smart Phone users with services in the form of hybrid apps. We also developed an architecture that uses beacon technology to provide orchestration information to users in real time.

A Study on Control system design for Automated Cultivation of product (농작물 재배 자동화를 위한 제어시스템 설계에 관한 연구)

  • Cho, Young Seok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.55-60
    • /
    • 2014
  • Today, there is increasing the elderly population in rural community, and people of returning from the urban to the rural community are demand to be of high value-added agriculture. In this time, there are required to regularization, standardization, automation, for getting of production of high value crops. In this paper, we are study for automation cultivation control system design for produce high-value crops. this system were designed of two parts that one part is measure and control unit, another part is server part for database and server side control. the main controller for measurement and control is used MC9S08AW60, server for Database and server-side control was using MySQL with CentOS. The source code of control program was coding C and compile with GCC. the functions of measurement and control unit are digital input and output each 8channels and can be scan-able of 20 Bit with 2CH/Sec. Analog Output were designed that can be output of 4-20mA or 0-5V on 4channel. The Digital input and output part were designed 8-channel, and using the high speed photo coupler and relays. We showed that system is possible to measure a 20bit data width, 2Ch/sec as 8 channel analog signals.

The optimal control technology on complex environment in horticulture based on artificial intelligence (인공지능 기반 시설원예 최적 복합 환경 제어 기술)

  • Min, Jae Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.756-759
    • /
    • 2017
  • The productivity of cultivated crops in Korea is low compared to the Netherlands, which is an advanced agricultural country. In addition, modernization of facility and complex environmental control technology are needed to overcome poor growth and productivity deterioration caused by shortage of sunshine, abnormal temperature and high temperature due to abnormal climate. On the other hand, domestic facility horticulture complex environmental control is a level of machine automation that can check the internal situation of a green house with a cell phone and remotely operate a sprinkler, heat cover, curtain, ventilator, Therefore, this paper suggests the development of optimum environment control technology for facility horticulture based on the growth model and the cultivation technology knowledge base in order to realize the automation of optimal complex environment control and contribute to improvement of quality and productivity of cultivated crops.

  • PDF

Consolidation of Agricultural Institutions and Its Efficient Management Schemes for the 21 st Century-oriented Agricultural Development - Case Study for Land Choongcheongnam-Do - (21세기 농업발전을 위한 농업관련기관의 집단화 및 효율적 운영방안 - 충청남도의 예 -)

  • 김종옥;김창호
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.2
    • /
    • pp.81-90
    • /
    • 1996
  • In this paper, the basic planning for the creation of consolidated agricultural institutions of Choongcheongnam -Do and its management schemes were established. These institutions, including rural development office, farmers'training institution, original seeding field of farm crops, agriculturial information center, packing design center, agricultural machinery repair center, agricultural scientific conference hall, agricultural museum, agricultural park, farmers'hall and event plaza, are planned to be created. The required area for the site is 1,246,781 m2. 281-22 Jongkyung-Ri, Sinam-Myun, Yesan-Gun, Choongcheongnam-Do and its surroundings is a proper site for the creation of'consolidated agricultural institution because the actual conditions of the soil, traffic network, irrigation and drainage, tourist routes and human resources are very good. The layout of the facilities that would comprise an agricultural institution was organized in consideration of the functions and roles of each facility and the relationships among facilities in this consolidated agricultural institution. It is desirable that the headquaters of consolidated agricultural institution oversees the management department, the planning $.$ administration $.$ information department, the rural development office, the farmers'training institution, the original seeding field of farm crops and the agricultural park.

  • PDF

Farm survey on the application of solar energy system to the controlled culture (태양열을 이용한 난방시스템의 시설재배 실용화 실태 조사)

  • 남상영;강한철;김태수;김인재;김민자;이철희
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.249-254
    • /
    • 2000
  • Heating supply system using solar energy-collecting plate was examined for 20 farmers. Some problems, resolution, future energy system, and basic information were discussed, Installation cost was approximately 18 million won/20a. Main crops cultured were tomato(30%) and floricultural crop(40%). Minor crops cultured were grape, red pepper, cucumber, lettuce, and strawberry. Information was mostly obtained from agricultural service agents. 75% of farm house hold reported that energy reduction effect was below 20%, showing some different result compared with over 20% that was totalized from agricultural service agents. Cost of installation was excessive in considering energy reduction effect. Another problem was insufficient technical proficiency of solar energy company.

  • PDF

Development Design to automatically control temperature & humidity needed to develop mushroom crop including image contents (영상콘텐츠를 포함한 농작물 육성에 필요한 온·습도 자동제어장치 개발에 관한 설계)

  • Lee, Hyun-chang;Jin, Chan-Yong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.368-370
    • /
    • 2016
  • The purpose of the cultivated crops have been changes in the aim of improving quality production. In recent years, as people's attention on health, the demand for healthy crops such as mushrooms gradually increased. Farmers use plastic greenhouse cultivation mode more and more in order to reduce the impact of outdoor environment on crop cultivation, which requires farmers to adjust the greenhouse temperature at any time. But the majority of farmers still use a thermometer to measure temperature. This paper constructs an environment that can automatically adjust the temperature, so as to measuring temperature in real time, improving the efficiency of the farm work, and reducing unnecessary labor.

  • PDF

A Survey on the Occurrence of Barley Stripe Disease in Yoengnam Area (영남지방의 보리 줄무늬병 발생실태에 관한 조사연구)

  • Lee Do-Hee;Jung Yeun-Tae;Suh Deuk-Yong;Jin Young-Dae;Park Rae-Kyung
    • Korean journal of applied entomology
    • /
    • v.22 no.1 s.54
    • /
    • pp.1-6
    • /
    • 1983
  • The survey on the occurrence and distribution of barley stripe disease was conducted in the farmer's field of 19 gun (county) throughout Yeongmm area in May of 1982, in order to obtain a basic information on the breeding of resistant varieties, and for control of the disease. The percent of infected culms of barley stripe disease in Gyeongnam province (Southern Yeongnam) was higher $(13.7\%)$ them in Gyeong-bug $(6.9\%)$, northern Yeongnam, and especially, Ham-an, Milyang, Eui-chang and Weol-seong were severly occurred. The cultivar of Millyang 6 was slightly infected while the cultivars Olbori and Oweolbori were severely infected by the disease. Among soil conditions, the barley plant grown in the loam, clay and clay loam texture which have more availble moisture, and that of the plant cultivated in the poorly drained soils were shown to have severe infection. The barley plant grown in the soils in local valley $(18.8\%)$ where is frequently over saturated with water showed the more infection the barley plant grown in plains $(9.5\%)$. Generally, the poorer the soil drainage the more severeinfection occurred. Among cultivation conditions, the earlier the sowing dates of the barley, the less the percent of infected culms was observed. The heavier or lighter application of N fertilizer than the optimum to barley plant seemed to cause more infection.

  • PDF