• Title/Summary/Keyword: Cropping system

Search Result 558, Processing Time 0.03 seconds

Interaction between different nitrogen fertilizer levels and maize-bean intercropping patterns

  • Sadeghi, Hossein;Kazemeini, Seyed Abdolreza
    • Journal of Ecology and Environment
    • /
    • v.35 no.4
    • /
    • pp.269-277
    • /
    • 2012
  • In order to investigate the effects of different maize-bean intercropping patterns, and of nitrogen fertilizers on morphological and yield related traits, a factorial study based on Randomized Complete Block Design (RCBD) was performed during the 2010 and 2011 growing seasons in a research filed of Shiraz University, Iran. The first factor of the study was seven different ratios of Maize-Bean intercropping system (Maize sole cropping, Bean sole cropping, and intercropping of maize/bean at the ratios of 1/3, 1/1, 2/3, 3/2 and 3/1) and the second factor was three nitrogen (N) fertilizer application levels (0, 100 and 200 kg N/ha). Results showed that with respect to increasing the levels of N fertilizer, the yield of bean sole cropping decreased but the yield of maize sole cropping increased. On the other hand, in intercropping systems with N fertilizer application, the yield of both crops increased. Results of total land equivalent ratio (LER) for both crops showed that the highest LER value under both 100 and 200 kg N/ha application was that of M1B1 (1 seed of maize after 1 seed of bean, consecutively, on a row with same distance). Under no N fertilizer application the highest LER value was that of M2B3 (2 seeds of maize after 3 seeds of bean, consecutively, on a row with same distance). Overall, it can be concluded that M1B1 is the best intercropping pattern in maize-bean intercropping systems and that the application of N fertilizer can be effective within practical settings of intercropping agriculture, resulting in higher yields.

Present Status of Soilborne Disease Incidence and Scheme for Its Integrated Management in Korea (국내 토양병해 발생현황과 종합 관리방안)

  • Kim, Choong-Hoe;Kim, Yong-Ki
    • Research in Plant Disease
    • /
    • v.8 no.3
    • /
    • pp.146-161
    • /
    • 2002
  • Incidence of soilborne diseases, as a major cause of failure of continuous monocropping becomes severe in recent years. For examples, recent epidemics of club root of chinese cabbage, white rot of garlic, bacterial wilt of potato, pepper phytophthora blight, tomato fusarium wilt and CGMMV of watermelon are the diseases that require urgent control measures. Reasons for the severe incidence of soilborne diseases are the simplified cropping system or continuous monocropping associated with allocation of major production areas of certain crop and year-round cultivation system that results in rapid degradation of soil environment. Neglect of breeding for disease resistance relative to giving much emphasis on high yield and good quality, and cultural methods putting first on the use of chemical fertilizers are thought to be the reason. Counter-measures against soilborne disease epidemics would become most effective when the remedies are seeded for individual causes. As long-term strategies, development of rational cropping system which fits local cropping and economic condition, development and supply of cultivars resistant to multiple diseases, and improvement of soil environment by soil conditioning are suggested. In short-term strategies, simple and economical soil-disinfestation technology, and quick and accurate forecasting methods for soilborne diseases are urgent matter far development. for these, extensive supports are required in governmental level for rearing soilborne disease specialists and activation of collaborating researches to solve encountering problems of soilborne diseases.

The Study on Double Cropping System for Organic Forage Production in Southern Region of Korea (남부지역에서 유기조사료 생산에 적합한 작부체계에 관한 연구)

  • Yoon, Sei-Hyung;Kim, Jong-Geun;Jeong, Eui-Soo;Lim, Young-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • This experiment was conducted to investigate the selection of regional double cropping system for production of organic forage in southern region of Korea. The species of forage crop used in this experiment were com, sorghum$\times$sudangrass hybrid and japanese millet for summer crops and rye and Italian. ryegrass for winter crops. In organic cultivation condition, sorghum$\times$sudangrass hybrid showed higher DM (dry matter) and TDN (total digestible nutrient) yield than that of com. Dry matter yield of com which cultivated in organic condition decreased to about 35% that of control because of weed. In winter crops, DM and TDN yield of rye is similar to that of Italian ryegrass. We could not find out the difference of nutrient value between each treatments. It means that the amount of nutrient is affected by DM productivity of each crop. The result of this study indicated that sorghum$\times$sudangrass hybrid (summer crop) and rye (winter crop), sorghum$\times$sudangrass hybrid (summer crop) and Italian ryegrass (winter crop) cropping system could be recommended as producing high yield of organic forage in southern region of Korea.

The Study on Double Cropping System for Organic Forage Production in Middle Part of Korea (중부지역에서 유기조사료 생산에 적합한 작부체계에 관한 연구)

  • Yoon, Sei-Hyung;Kim, Jong-Geun;Jeong, Eui-Soo;Sung, Si-Heung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.275-280
    • /
    • 2007
  • This experiment was conducted to investigate the selection of regional double cropping system for production of organic forage in middle part of Korea. The species of forage crop used in this experiment were corn, $sorghum\;{\times}\;sudangrass$ hybrid and japanese millet for summer crops and rye and Italian ryegrass for winter crops. $Sorghum\;{\times}\;sudangrass$ hybrid showed higher DM (dry matter) and TDN (total digestible nutrient) yield than that of corn. Dry matter yield of corn decreased to 56% that of control because of weed. In winter crops, DM and TDN yield of rye is higher than that of Italian ryegrass. Rye was more adequate to produce organic forage in middle part of Korea. We could not find out the difference of nutrient value between each treatments. It means that the amount of nutrient is affected by DM productivity of each crop. The result of this study indicated that $sorghum{\times}sudangrass$ hybrid (summer crop) and rye (winter crop) cropping system could be recommended as producing high yield of organic forage in middle part of Korea.

Study on the Forage Cropping System of Italian Ryegrass and Summer Forage Crops at Paddy Field in Middle Region of Korea (중부지역 논에서 이탈리안 라이그라스와 하계 사료작물을 연계한 작부체계 연구)

  • Oh, Mirae;Choi, Bo Ram;Lee, Se Young;Jung, Jeong Sung;Park, Hyung Soo;Lee, Bae Hun;Kim, Ki-Yong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • This study was evaluated to compare annual productivity and feed value of Italian ryegrass and summer forage crops at paddy field in middle region of Korea. Italian ryegrass (Kowinearly) was used as winter forage crop, and forage rice (Youngwoo) and barnyard millet (Jeju) were used as summer forage crops. Each crop was cultivated using the standard forage cultivation method. The plant height, dry matter yield, crude protein content, and total digestible nutrient content of Italian ryegrass were 90.6 cm, 7,681 kg/ha, 9.2%, and 63.8%, respectively, and it was no significant difference by summer forage crops (p>0.05). The plant height of summer forage crops was the higher in barnyard millet than in forage rice (p<0.05). The dry matter, crude protein, and total digestible nutrient yields of summer forage crops were the higher in forage rice than in barnyard millet (p<0.05). Also, the feed value of summer forage crops was higher in forage rice than in barnyard millet. In conclusion, the combination of Italian ryegrass-forage rice was the most effective cropping system for annual forage production with high-yield and high-feed value, and it was considered the combination of Italian ryegrass-barnyard millet was good cropping system for annual forage production through reducing labor and cultivating stable at paddy field in middle region of Korea.

Studies on Corn-Legume Intercropping System IV. Effects of corn-soybean intercropping on chemical composition and TDN yield (Silage용 옥수수와 두과작물의 간작에 관한 연구 IV. Silage용 옥수수 (Zea mays L.) 와 콩 ( Glycine max (L.) Merr.) 의 간작이 영양성분함량 및 TDN수량에 미치는 영향)

  • 이성규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.9 no.2
    • /
    • pp.113-118
    • /
    • 1989
  • This experiment was carried out to compare chemical composition, TDN yield of corn-soybean intercropping and corn monocropping forage plants at different harvesting time and obtained the following results. 1. In both cropping systems, the content of chemical composition of forage were changed same pattern in growing stage. The content of crude protein in corn-soybean intercropping forage at yellow stage increased more than that of corn nonocropping forage, while the crude fat in corn monocropping forage plants increased than that of corn-soybean intercropping forage plants at mature stage. 2. The crude fiber, crude ash, ADF content of forage plants in both cropping system decreased same pattern in growing period, however, NFE content of forage increased with maturity. 3. TDN yield of corn-soybean intercropping and corn monocropping forage plants at yellow stage obtained similar results and TDN yield per 10a in intercropping and monocropping were 1006.lkg and 978.6kg, respectively. 4. Consequently, corn-soybean interaopping system could be increased crude protein yield without decreasing of dry matter yield in comparison with corn monocropping system for corn silage.

  • PDF

Effect of Drainage Culvert Spacing on Forage Crops Production in Poorly Drained Paddy Field Converted to Upland Crop Cultivation (배수불량 논에서 암거배수처리가 동.하계 사료작물생산에 미치는 영향)

  • Shin, Jae-Soon;Jeon, Jong-Gil;Lee, Sang-Bong;Kim, Won-Ho;Yoon, Sei-Hyung;Lee, Joung-Kyong;Kim, Jong-Guen;Jung, Min-Woong;Seo, Sung;Lim, Young-Cheol
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.4
    • /
    • pp.301-306
    • /
    • 2008
  • This experiment was conducted to compare the agronomic characteristics, productivity of silage com and barley cropping, forage sorghum and barley cropping in accordance with Drainage Culvert Spacing at poorly drained paddy field in National Institute of Animal Science, at Seonghwan in Korea, March 2006 to May 2007. The emergency and flowering date were no different among treatments. Emergency rate and flowering date were 90% and July 26 in silage com, 91% and July 21 in forage sorghum, 92% and April 27 in barley, respectively. Dry matter yield was high in line with 3 m drainage culvert spacing (24,389 kg/ha) > 5 m (23,543 kg/ha) > 7 m (21,527 kg/ha) > 0 m (14,132 kg/ha). In cropping systems, dry matter yield of forage sorghum and barley (22,111 kg/ha) was higher than silage com and barley (19,684 kg/ha). Crude protein and TDN yield were high in line with 3 m (2,365 and 15,394 kg/ha) > 5 m (2,255 and 14,513 kg/ha) > 7 m (1,884 and 13,747 kg/ha) > 0 m (995 and 8,682 kg/ha). In cropping systems, crude protein and TDN (total digestible nutrients) yield of forage sorghum and barley cropping system (2,165 and 13,582 kg/ha) was higher than silage com and barley cropping system (1,576 kg/ha and 12,482 kg/ha), respectively. Consequently proper drainage culvert Spacing at poorly drained paddy field was 5 m with forage sorghum and barley cropping system.

Effects of Barley Straw Management Practices on Greenhouse Gases(GHGs) Emission During Rice Cultivation in Rice-barley Double Cropping System (벼보리 이모작 재배에서 보리짚 처리 방법이 벼재배시 온실가스 배출에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Jung, Ki-yul;Choi, Young-Dae;Ramos, Edwin P;Yun, Eul-Soo;Kang, Hwang-Won;Park, Seong-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.65-73
    • /
    • 2008
  • Because main barley straw management is changing these days from off-fields to burning that may relate to air quality concerning the global warming, this study was conducted to investigate the effects of barley-straw management practices on greenhouse gas emissions during rice cultivation in rice-barley double cropping system. The treatments were barley straw burning, off-field usage of barley straw and incorporation of barley straw in paddy fields. Laboratory experiment showed that burning of barley straw at the rate of $4.5Mg\;ha^{-1}$ emitted GHGs in the amounts of 4,607, 19.5, and $0.9kg\;ha^{-1}$ of $CO_2$, $CH_4$, and $N_2O$, respectively. During the rice cultivation of the rice-barley double cropping system, the highest GHG emission by evaluated close-static chamber method was observed from the soil incorporation of barley straw with 387 and $1.0kg\;ha^{-1}$ of $CH_4$ and $N_2O$, respectively. The GHGs emissions from the barley straw burning and off-field usage treatments were 233 and $160kg\;ha^{-1}$ for $CH_4$ and 0.80 and $0.79kg\;ha^{-1}$ for $N_2O$, respectively. The barley straw burning treatment showed the greatest GHGs emission among barley straw management practices in rice-barley double cropping system when considering GHGs emissions both during burning and from paddy fields during the cropping seasons. As a result, the GHGs emissions recorded in the barley straw incorporation to soil and off-field usage treatments were 22.4 and 66.8%, respectively, less than sum of GHGs emissions from the burning of barley straw and from paddy fields during rice cultivation.

Still Image Watermarking in the DCT Domain Using the Human Visual System (DCT 영역에서의 인간의 시각적 특성을 이용한 정지 영상 워터마킹 방법)

  • Kwon O-Hyung;Park Rae-Hong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1214-1221
    • /
    • 2005
  • In this paper, we propose a digital watermarking method for still images, in which the human visual system (HVS) is used in the discrete cosine transform (DCT) domain. The modulation transfer function (MTF) of the HVS model is employed to increase the invisibility of the inserted watermark in images. The proposed watermarking method is shown to be robust to several common image processing techniques, including lowpass filtering and cropping. Also, using the energy relationship of the DCT, we derive the equation that directly computes the watermark weighting factor in the DCT domain for the specified peak signal to noise ratio (PSNR) of the still image and the length of watermark to be inserted. The difference between desired PSNR and PSNR in spatial domain is within 0.07dB for the 7 test images.

Evapotranspirations of Lettuce and Cucumber by Cropping Systems in Greenhouse (시설재배 상추 및 오이의 재배방식별 증발산량)

  • 남상운;이남호;전우정;황한철;홍성구;허연정
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.168-175
    • /
    • 1997
  • In greenhouse, data on evapotranspiration or water consumption is important for the rational water management, irrigation planning, thermal environment analysis, and watering automation. But little investigations have been attempted to make clear the characteristics of water consumption in greenhouse. In this paper, evapotransplrations of lettuce and cucumber by cropping systems were investigated. And the correlations among evapotranspiration, pan evaporation, solar radiation, mean air temperature, and minimum relative humidity were analyzed. Experimental cropping systems of lettuce were soil culture and NFT system. Those of cucumber were soil culture, perlite culture, and rockwool culture. Total water consumption of lettuce was 2.62$\ell$/plant in soil culture and 1.71$\ell$/plant in NFT system. That of cucumber was 45.22$\ell$/plant in soil culture, 27.45$\ell$/plant in rockwool culture and 29.06$\ell$/plant in perlite culture. Therefore total water consumption of soil culture showed higher than soilless culture.

  • PDF